
 

 

should be sufficient to assume the ACF is continuous. 
However, the number should be decreased if the 
calculation amount is too large. To calculate RA, first, s 
random combinations of the control and noise factors are 
generated based on their probability density functions. 
Second, objective characteristic yi is calculated using the 
generated random combinations {xi, zi} ( i=1, 2,..., s) and 
all the assignable point values. That is, the number of 
calculating objective characteristic values is the product 
of the random combination number s and the assignable 
points numbers of ACFs. Finally, the values calculated 
from each random combinations of xi and zi are assessed 
to determine whether at least one of the calculated values 
is within the tolerance (i.e., at least one assignable point  
which consists an objective characteristic value that 
satisfies the tolerance). Then RA is calculated as:  
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The previous method derived the combination of the 
ACFs using the genetic algorithm (GA) whose fitness is 
assigned RA. However, deriving the small adjustable 
ranges is difficult using this method because it is not 
considers those. 

Below are definitions and descriptions of the 
terminologies used in this paper.  
Objective characteristic ( y = f(x, z, t) ): The characteristic 
to express the function of the design objective, and is 
calculated by objective function f.  
Control factors ( x = {xi}, i=1, 2,..., nx ): Factors whose 
nominal values are set by the designer, but fluctuate the 
objective characteristic. nx represents the total number of 
control factors.  
Noise factors (z = {zi}, i=1, 2,..., nz ): Factors that 
fluctuate the objective characteristic, but their nominal 

values cannot be set by designers. nz expresses the total 
number of noise factors.  
ACFs (t = {ti}, i=1, 2,..., nt ): Control factors with nominal 
values that can be adjusted within their adjustable ranges. 
nt denotes the total number of ACFs.  
Adjustable range of ACFs ([ tu, tl ]): The range, defined 
by the designer, where the ACFs are adjustable.  
Assignable points of ACFs ({tj} , j=1, 2,..., nap): The 
combinations of ACFs' values that can be varied to be 
within the adjustable range. nap denotes the number of 
ACFs' assignable points.  
Robustness index (RA): Index to evaluate the robustness 
of the objective characteristics with regards to the ACFs 
adjustment. 

This research applies the Vector evaluated particle 
swarm optimization in order to maximize RA and 
minimize the adjustable range, and aims to improving the 
above issue. 
 
2 Type and comparison of Multi-objective 

optimization 
This research selected multi-objective optimization 

method which simultaneous optimize maximizing RA and 
minimizing the adjustable range. Multi-objective 
optimization method derives the pareto optimal solution 
in the minimization problem which is minimized multi-
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Fig. 2 Concept of a robustness index 

Fig. 1  Conceptual illustration of a design problem that includes a factor whose value is adjustable 
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Abstract 
Robust design that enables the products to ensure robust 
performance in diverse users and the surroundings has 
received much attention. The previous research proposed 
a robust design method derived the optimal adjustable 
ranges of the adjustable control factors by using the 
optimization method which considers only robustness. 
However, deriving the small adjustable ranges is difficult 
using this method. Consequently, this research proposed 
a robust multiple optimization method using the Vector 
evaluated particle swarm optimization in order to 
consider both robustness and the adjustable range. 
Design examples are presented to demonstrate the 
applicability of the proposed method. 
Keywords: robust design, design methodology, particle 
swarm optimization, seat design 
 

1 Introduction 
Recently, globalization of markets has diversified 

both the users and the surroundings. Consequently, a 
robust design is crucial to maintain the function of the 
design object [1] because it ensures function stability 
(hereinafter called robustness). Thus, the fluctuation of 
objective characteristics y, which expresses a design 
objective, due to the fluctuations of control factors x, 
which designers can control, and noise factors z, which 
designers cannot control, must be decreased. In most 
conventional methods, designers set control factors to 
fixed values to maximize the robustness. In cases where 
the objective characteristic distribution is smaller than 
the tolerance (Fig.1a), these methods can derive a design 
solution (optimized control factor values) x0 with 
sufficient robustness. However, in cases where the 
objective characteristic distribution is larger than the 
tolerance (Fig.1b), a solution to sufficiently maximize 
robustness cannot be obtained. In such cases, the control 
factors must be adjusted to ensure robustness. In other 
words, as the values of the control factors are varied, the 
whole of the objective characteristic distribution should 
be located within the tolerance (Fig.1c). Unfortunately, 
securing sufficient robustness is difficult using these 
methods when the distributions of the objective 
characteristics are significantly larger than their tolerance. 

In a previous research, a robust design method for 
adjustable mechanism was proposed to overcome the 
problem where a sufficient function cannot be ensured for 
diverse users or surroundings [2, 3]. In this method, 
control factors whose values are adjusted by adjustable 
mechanisms are defined as adjustable control factors t 
(hereinafter called ACFs). Because this method properly 
evaluates the robustness, it allows designers to judge the 

employment of the adjustable mechanisms as well as to 
set the ranges where the ACF values are adjustable. 
These ranges, called adjustable ranges, are represented as 
[tl, tu] where tl and tu denote the lower and upper limit of 
the ACF values, respectively.  

The concept of robustness in this research is defined 
below. If the tolerance of objective characteristic [yl, yu] 
exists as shown in Fig. 1, then ACFs can be adjusted to 
locate each fluctuation value of the objective 
characteristic within the tolerance. Hence, the robustness 
index for ACFs (RA) is defined as the feasibility that the 
objective characteristic values are within the tolerance at 
least once, by the adjustment of ACFs. Using ACFs and 
RA, design problems in this research are expressed as 
shown in the following equation. 
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where f is the objective function. To prevent an 
unnecessary expansion of the ACF ranges, which 
increases the production costs and failure rate, this 
formulation does not only maximize RA. Minimizing the 
size of the range described in eq. (1) is an example of 
preventing an unnecessary expansion because other 
factors (e.g., the form and location of the range) can lead 
to the aforementioned issues. 
Additionally, RA is calculated as the ratio of the sum of 
the sets of fluctuant combinations of x and z where at 
least one of the objective characteristic values yj derived 
from tj is within the tolerance as shown in the following 
equation. 
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where the square bracket expresses a set of C(x, z) where 
the objective characteristic is located within the tolerance 
by adjusting ACFs. This means RA is the rate of the set 
and the entire set (Fig. 2). The assignable point values are 
expressed as a finite number of discontinuous values tj 
because RA is calculated using the Monte Carlo method. 
The number of the assignable (discontinuous) values 
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should be sufficient to assume the ACF is continuous. 
However, the number should be decreased if the 
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random combinations of the control and noise factors are 
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Second, objective characteristic yi is calculated using the 
generated random combinations {xi, zi} ( i=1, 2,..., s) and 
all the assignable point values. That is, the number of 
calculating objective characteristic values is the product 
of the random combination number s and the assignable 
points numbers of ACFs. Finally, the values calculated 
from each random combinations of xi and zi are assessed 
to determine whether at least one of the calculated values 
is within the tolerance (i.e., at least one assignable point  
which consists an objective characteristic value that 
satisfies the tolerance). Then RA is calculated as:  
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The previous method derived the combination of the 
ACFs using the genetic algorithm (GA) whose fitness is 
assigned RA. However, deriving the small adjustable 
ranges is difficult using this method because it is not 
considers those. 

Below are definitions and descriptions of the 
terminologies used in this paper.  
Objective characteristic ( y = f(x, z, t) ): The characteristic 
to express the function of the design objective, and is 
calculated by objective function f.  
Control factors ( x = {xi}, i=1, 2,..., nx ): Factors whose 
nominal values are set by the designer, but fluctuate the 
objective characteristic. nx represents the total number of 
control factors.  
Noise factors (z = {zi}, i=1, 2,..., nz ): Factors that 
fluctuate the objective characteristic, but their nominal 

values cannot be set by designers. nz expresses the total 
number of noise factors.  
ACFs (t = {ti}, i=1, 2,..., nt ): Control factors with nominal 
values that can be adjusted within their adjustable ranges. 
nt denotes the total number of ACFs.  
Adjustable range of ACFs ([ tu, tl ]): The range, defined 
by the designer, where the ACFs are adjustable.  
Assignable points of ACFs ({tj} , j=1, 2,..., nap): The 
combinations of ACFs' values that can be varied to be 
within the adjustable range. nap denotes the number of 
ACFs' assignable points.  
Robustness index (RA): Index to evaluate the robustness 
of the objective characteristics with regards to the ACFs 
adjustment. 

This research applies the Vector evaluated particle 
swarm optimization in order to maximize RA and 
minimize the adjustable range, and aims to improving the 
above issue. 
 
2 Type and comparison of Multi-objective 

optimization 
This research selected multi-objective optimization 

method which simultaneous optimize maximizing RA and 
minimizing the adjustable range. Multi-objective 
optimization method derives the pareto optimal solution 
in the minimization problem which is minimized multi-
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1 Introduction 
Recently, globalization of markets has diversified 

both the users and the surroundings. Consequently, a 
robust design is crucial to maintain the function of the 
design object [1] because it ensures function stability 
(hereinafter called robustness). Thus, the fluctuation of 
objective characteristics y, which expresses a design 
objective, due to the fluctuations of control factors x, 
which designers can control, and noise factors z, which 
designers cannot control, must be decreased. In most 
conventional methods, designers set control factors to 
fixed values to maximize the robustness. In cases where 
the objective characteristic distribution is smaller than 
the tolerance (Fig.1a), these methods can derive a design 
solution (optimized control factor values) x0 with 
sufficient robustness. However, in cases where the 
objective characteristic distribution is larger than the 
tolerance (Fig.1b), a solution to sufficiently maximize 
robustness cannot be obtained. In such cases, the control 
factors must be adjusted to ensure robustness. In other 
words, as the values of the control factors are varied, the 
whole of the objective characteristic distribution should 
be located within the tolerance (Fig.1c). Unfortunately, 
securing sufficient robustness is difficult using these 
methods when the distributions of the objective 
characteristics are significantly larger than their tolerance. 

In a previous research, a robust design method for 
adjustable mechanism was proposed to overcome the 
problem where a sufficient function cannot be ensured for 
diverse users or surroundings [2, 3]. In this method, 
control factors whose values are adjusted by adjustable 
mechanisms are defined as adjustable control factors t 
(hereinafter called ACFs). Because this method properly 
evaluates the robustness, it allows designers to judge the 

employment of the adjustable mechanisms as well as to 
set the ranges where the ACF values are adjustable. 
These ranges, called adjustable ranges, are represented as 
[tl, tu] where tl and tu denote the lower and upper limit of 
the ACF values, respectively.  

The concept of robustness in this research is defined 
below. If the tolerance of objective characteristic [yl, yu] 
exists as shown in Fig. 1, then ACFs can be adjusted to 
locate each fluctuation value of the objective 
characteristic within the tolerance. Hence, the robustness 
index for ACFs (RA) is defined as the feasibility that the 
objective characteristic values are within the tolerance at 
least once, by the adjustment of ACFs. Using ACFs and 
RA, design problems in this research are expressed as 
shown in the following equation. 

 
 

  
lu

A

ul

minimize to
),,(maximize to

,,  Find

tt
tzx

xtt



 fyR
,   (1) 

where f is the objective function. To prevent an 
unnecessary expansion of the ACF ranges, which 
increases the production costs and failure rate, this 
formulation does not only maximize RA. Minimizing the 
size of the range described in eq. (1) is an example of 
preventing an unnecessary expansion because other 
factors (e.g., the form and location of the range) can lead 
to the aforementioned issues. 
Additionally, RA is calculated as the ratio of the sum of 
the sets of fluctuant combinations of x and z where at 
least one of the objective characteristic values yj derived 
from tj is within the tolerance as shown in the following 
equation. 
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where the square bracket expresses a set of C(x, z) where 
the objective characteristic is located within the tolerance 
by adjusting ACFs. This means RA is the rate of the set 
and the entire set (Fig. 2). The assignable point values are 
expressed as a finite number of discontinuous values tj 
because RA is calculated using the Monte Carlo method. 
The number of the assignable (discontinuous) values 
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problems. The PSO imitates the movement of organisms 
in a bird flock or fish school and searches a solution using 
the information both from the individuals (particles) and 
their swarm. The VEPSO assigns an objective to each of 
swarms and searches a solution using the information 
inside or between swarms. The location vector (i.e. 
design variables) of the i th particle in the j th swarm xi

[j] 
is updated as follows:  
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where, T is the number of iterations. v is the velocity 
vector to direct the particles to the updated locations and  
is calculated as:  
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where, M is the number of swarms; c1 and c2 are the 
parameters to express the degree of incidence of the 
private best location of each particle xpb and the global 
best location xgb , respectively; r1 and r2 denote the 
random numbers uniformly distributed in [0, 1]. w is the 
parameter to define the effect of the current velocity 
vector and decreases based on T as shown in the 
following equation:  
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T
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 ,   (6) 

where, wmax and wmin are the maximum and minimum 
value of w, respectively. Tmax is the maximum number of 
the iterations. k denotes the parameter relating the 
convergence performance and expressed as the following 
equation:  

.   (7) 

As shown in eq. (5), the velocity vectors are defined 
using the global best locations of the different swarms. 
This enables the solution search based on the information 
from the other swarms and the global locations 
(solutions) of the swarms to approach each other.  
 
 
 
4 Proposal robust design method using 

VEPSO 
This study assigned each swarms to the robustness 

index and ACF range that is the Euclidean distance 
between assignable points. 

The optimization algorithm using the VEPSO is 
described in Fig.3. In this algorithm, the parameters of 
the VEPSO (e.g. c, w, Tmax, etc) are firstly set. Next, the 

number of the assignable points is decided and the same 
number of the swarms is set. The locations of the particles 
are updated based on the objective (robustness) RA and 
ACFs range. The derived pareto optimal solutions is 
memorized in an external archive [8]. The update of the 
locations iterates until T = Tmax, and the solution 
candidates in an external archive are derived and an 
optimal design solution (adjustable range is selected by 
the designers). 
 

5 Illustrative Example 
5.1 Problem Description 

Similar to previous studies [2, 4], the design 
objective in this design example is to reduce the hip-
sliding force for a public seat. The ACFs are defined as 
seat the cushion angle θC, seat back angle θB and forward 
tilt angle θF. 

Additionally, in the PSO, the parameters (e.g. c, w, 
etc) are important for the convergence and the 
computational efficiency. Specifically, c denotes weight 
of exchanging information between swarms, and affect 
the search of the pareto optimal solutions. Therefore, this 
study focused on c1 and c2. To clarify the proper values 
of them, this study implemented the analyses regarding 
several values of the parameter combinations similar to 
the conventional studies by Carlisle [9]. Carisle varied 
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objective function which has trade off relationship, where 
he pareto optimal solution is the feasible solution that 
cannot minimize all objective function simultaneously.  

Multi-objective optimization methods are divided 
into two types: scalar methods and evolutionary multi-
objective optimization methods. 

Scalar methods singulate the objective functions 
and derive an optimal solution from one the pareto 
optimal set. The characteristics of the scalar approaches 
are summarized in Table 1. Some of the scalar methods 
are described as follows: 1) weighted aggregation (all 
objective functions are summed up to a single scalar with 
a prescribed weight); 2) -constrained (objective 
functions are transformed into constraints exception of 
the one emphasized by user); 3) Goal Program (minimize 
the distance between the value of each objective function 
and the aspiration level). These methods can derive an 
accurate solution of the monomodal function using the 
mathematical techniques (e.g. steepest descent method, 
newton method, etc) based on the gradient of the 
objective function. Additionally, they can also derive a 
global optimal solution of the multimodal function using 
the metaheuristics such as GA, etc. However, there are 
certain drawbacks: 1) the parameters (e.g. the weight 
coefficient, the aspiration level, etc) are required to be 
set; 2) only one pareto optimal solution can be derived by 
once optimization trial. 

Evolutionary multi-objective optimization methods 
are proposed on the basis of applied the metaheuristics 
(e.g. GA, particle swarm optimization (PSO), etc). These 
methods can derive many pareto optimal solutions using 
only a few parameters (without weighted coefficient, the 
aspiration level, etc) However, there are certain 
drawbacks compared to the scalar methods: 1) accuracy 
of the derived pareto optimal solution is less; 2) it has 
larger amount of the calculation. In the robust design 
problem of this study (eq. (1)), it is difficult to set the 
proper parameters of RA and the adjustable range, such as 
the weighted coefficient and the aspiration level. Hence, 
this study applied evolutionary multi-objective 

optimization to the proposed method, and focused the 
PSO. It is described in the following reason: the design 
problem of eq. (1) seems to include both of the 
continuous values (e.g. the adjustment amount of a 
reclining seat angle) and the discrete values (e.g. the 
variation of the manufacture). The discrete values can be 
described as the combination of the continuous values. 
Therefore, this study used evolutionary multi-objective 
optimization method based on PSO which can derive a 
global optimal solution on continuous function. The 
characteristics of each multi-objective optimization 
based on PSO are shown in Table 2. In this table, Vector 
Evaluated Particle Swarm Optimization (VEPSO) has 
low computational complexity compared to the other. 
This is beneficial to the design problem (eq. (1)) because 
the computational complexity of RA is high. 
 This study is proposed an optimization algorithm using 
the VEPSO in order to solve the design problem. 
 

3 Outline of VEPSO  
The VEPSO [5, 6] is an improved method of the 

PSO [7] that is one of the representative metaheuristics, 
in order to handle the multi objective optimization 
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problems. The PSO imitates the movement of organisms 
in a bird flock or fish school and searches a solution using 
the information both from the individuals (particles) and 
their swarm. The VEPSO assigns an objective to each of 
swarms and searches a solution using the information 
inside or between swarms. The location vector (i.e. 
design variables) of the i th particle in the j th swarm xi

[j] 
is updated as follows:  
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where, T is the number of iterations. v is the velocity 
vector to direct the particles to the updated locations and  
is calculated as:  
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where, M is the number of swarms; c1 and c2 are the 
parameters to express the degree of incidence of the 
private best location of each particle xpb and the global 
best location xgb , respectively; r1 and r2 denote the 
random numbers uniformly distributed in [0, 1]. w is the 
parameter to define the effect of the current velocity 
vector and decreases based on T as shown in the 
following equation:  

  T
T

wwwTw 



max

minmax
max

 ,   (6) 

where, wmax and wmin are the maximum and minimum 
value of w, respectively. Tmax is the maximum number of 
the iterations. k denotes the parameter relating the 
convergence performance and expressed as the following 
equation:  

.   (7) 

As shown in eq. (5), the velocity vectors are defined 
using the global best locations of the different swarms. 
This enables the solution search based on the information 
from the other swarms and the global locations 
(solutions) of the swarms to approach each other.  
 
 
 
4 Proposal robust design method using 

VEPSO 
This study assigned each swarms to the robustness 

index and ACF range that is the Euclidean distance 
between assignable points. 

The optimization algorithm using the VEPSO is 
described in Fig.3. In this algorithm, the parameters of 
the VEPSO (e.g. c, w, Tmax, etc) are firstly set. Next, the 

number of the assignable points is decided and the same 
number of the swarms is set. The locations of the particles 
are updated based on the objective (robustness) RA and 
ACFs range. The derived pareto optimal solutions is 
memorized in an external archive [8]. The update of the 
locations iterates until T = Tmax, and the solution 
candidates in an external archive are derived and an 
optimal design solution (adjustable range is selected by 
the designers). 
 

5 Illustrative Example 
5.1 Problem Description 

Similar to previous studies [2, 4], the design 
objective in this design example is to reduce the hip-
sliding force for a public seat. The ACFs are defined as 
seat the cushion angle θC, seat back angle θB and forward 
tilt angle θF. 

Additionally, in the PSO, the parameters (e.g. c, w, 
etc) are important for the convergence and the 
computational efficiency. Specifically, c denotes weight 
of exchanging information between swarms, and affect 
the search of the pareto optimal solutions. Therefore, this 
study focused on c1 and c2. To clarify the proper values 
of them, this study implemented the analyses regarding 
several values of the parameter combinations similar to 
the conventional studies by Carlisle [9]. Carisle varied 
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Fig. 3 Proposed algorithm of robust design method  
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Calculate RA and ACFs range, and set global and 
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Set values of VEPSO (c, w, Tmax, etc.)

Update velocity location vector 
of each particle

Update non-dominated solutions in external archive

Icover(1) = 5/10 = 0.5

Icover(2) = 4/10 = 0.4

Icover = (0.5+0.4)/2 = 0.45
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f2

Fig. 4 Cover rate 

 

 

objective function which has trade off relationship, where 
he pareto optimal solution is the feasible solution that 
cannot minimize all objective function simultaneously.  

Multi-objective optimization methods are divided 
into two types: scalar methods and evolutionary multi-
objective optimization methods. 

Scalar methods singulate the objective functions 
and derive an optimal solution from one the pareto 
optimal set. The characteristics of the scalar approaches 
are summarized in Table 1. Some of the scalar methods 
are described as follows: 1) weighted aggregation (all 
objective functions are summed up to a single scalar with 
a prescribed weight); 2) -constrained (objective 
functions are transformed into constraints exception of 
the one emphasized by user); 3) Goal Program (minimize 
the distance between the value of each objective function 
and the aspiration level). These methods can derive an 
accurate solution of the monomodal function using the 
mathematical techniques (e.g. steepest descent method, 
newton method, etc) based on the gradient of the 
objective function. Additionally, they can also derive a 
global optimal solution of the multimodal function using 
the metaheuristics such as GA, etc. However, there are 
certain drawbacks: 1) the parameters (e.g. the weight 
coefficient, the aspiration level, etc) are required to be 
set; 2) only one pareto optimal solution can be derived by 
once optimization trial. 

Evolutionary multi-objective optimization methods 
are proposed on the basis of applied the metaheuristics 
(e.g. GA, particle swarm optimization (PSO), etc). These 
methods can derive many pareto optimal solutions using 
only a few parameters (without weighted coefficient, the 
aspiration level, etc) However, there are certain 
drawbacks compared to the scalar methods: 1) accuracy 
of the derived pareto optimal solution is less; 2) it has 
larger amount of the calculation. In the robust design 
problem of this study (eq. (1)), it is difficult to set the 
proper parameters of RA and the adjustable range, such as 
the weighted coefficient and the aspiration level. Hence, 
this study applied evolutionary multi-objective 

optimization to the proposed method, and focused the 
PSO. It is described in the following reason: the design 
problem of eq. (1) seems to include both of the 
continuous values (e.g. the adjustment amount of a 
reclining seat angle) and the discrete values (e.g. the 
variation of the manufacture). The discrete values can be 
described as the combination of the continuous values. 
Therefore, this study used evolutionary multi-objective 
optimization method based on PSO which can derive a 
global optimal solution on continuous function. The 
characteristics of each multi-objective optimization 
based on PSO are shown in Table 2. In this table, Vector 
Evaluated Particle Swarm Optimization (VEPSO) has 
low computational complexity compared to the other. 
This is beneficial to the design problem (eq. (1)) because 
the computational complexity of RA is high. 
 This study is proposed an optimization algorithm using 
the VEPSO in order to solve the design problem. 
 

3 Outline of VEPSO  
The VEPSO [5, 6] is an improved method of the 

PSO [7] that is one of the representative metaheuristics, 
in order to handle the multi objective optimization 
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the c1 from 0.0 to 4.1 (i.e., c2 = 4.1c1) and ran a test 
function for 20 times in each parameter combinations. 
Then, he evaluated the combinations using the median 
number of the function call until an optimal solution is 
derived. The derived pareto optimal solutions are 
expected to be diversity and accuracy. Therefore, this 
study applied the median value of cover rate [10] and 
Ratio of Non-dominated Individuals (RNI) [11], which 
can be compared the accuracy and the diversity of the 
pareto optimal solutions. The cover rate is the average 
value of the number of a region including the pareto 
optimal solutions divided by the number of all regions, 
where regions are generated dividing the objective space. 
Therefore, higher cover rate value means more diverse 
pareto optimal solutions (Fig. 4). RNI is the ratio of the 
number of the non-dominated solutions derived in each 
analysis divided by that of the entire set of the non-
dominated solutions derived in all analyses. Non-
dominated solution is described as the pareto optimal 
solution which dominates all others. Therefore, higher 
value means more similar to the true pareto optimal 
solutions (Fig. 5). The definition of the parameters in the 
analysis is summarized in Table 3. 
 
5.2 Result and discussion 

The analysis of this study derived the pareto optimal 
solutions for each parameter combination, and these 
Cover Rate and the RNI are shown in Fig. 6. Figure 6 (a) 
shows the cover rate is minimum at c1=4.10, c2=0.00. 
This means the smaller c2 causes the search considering 
each individual objective function (not considering both 
function). Additionally, Figure 6 (b) shows the RNI is 
maximum at c1 = 2.05, c2 = 2.05. This seems to be caused 
by the two reasons: the smaller c2 caused the issue 
described above and the larger c2 caused the local search. 
The latter is also pointed out by Carlisle [23]. Hence, the 
combination of the parameter values (c1 = 2.05, c2 = 2.05) 
is suitable in this design problem. The comparison of the 
pareto optimal solution (c1=2.05, c2=2.05) with the GA 
(conventional method) is shown in Fig. 7. This figure 
shows the proposed method derives the optimal design 
solution with higher robustness and smaller adjustable 
range compared to those by the conventional method. 
 

6 Conclusions 
The research proposed the robust multiple 

optimization method which optimize RA and the 
adjustable range in order to effectively derive the optimal 
adjustable ranges for adjustable mechanisms, focused 
evolutionary multi-objective optimization methods, and 
selected VEPSO. It is described in the following reason:  
those methods can derive many pareto optimal solutions 
using only a few parameters (without weighted 
coefficient, the aspiration level, etc.). Additionally, this. 
The proposed method was applied to seat design problem. 
In this application, it was confirmed that the proposed 
method can derive the design optimal solution with high 
robustness, small adjustable range and the appropriate 
parameters. 

 

Table 3 Definition of parameters 

Items
Set value

GA Proposed method (Analyses)

Tolerance of y –10 ≤ y ≤ 20
Feasible area of t1 10 ≤ θC≤ 25
Feasible area of t2 20 ≤ θB ≤ 35 ，θB≥ θC+10
Feasible area of t3 0 ≤ θF ≤ 30

Max iteration 
number Tmax

10000 100

c1 ― (0.00 - 4.10, 4.10 - 0.00)c2 ―
wmin ― 0.4
wmax ― 0.9

Number of
objective 1 2

Swarm size ― 30

Fig. 5 RNI 

● IRNI(1) = 5/13 = 0.38
■ IRNI(2) = 0/13 = 0
▲ IRNI(3) = 5/13 = 0.38
◆ IRNI(4) = 3/13 = 0.23

f1 f1

f2f2

(a) Sum set of each analyses (b) Non dominated solutions 
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■ Analysis2
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◆ Analysis4

Fig. 6 Evaluation of cover rate and RNI based on 
each c1(c2=4.1c1) parameters 
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the c1 from 0.0 to 4.1 (i.e., c2 = 4.1c1) and ran a test 
function for 20 times in each parameter combinations. 
Then, he evaluated the combinations using the median 
number of the function call until an optimal solution is 
derived. The derived pareto optimal solutions are 
expected to be diversity and accuracy. Therefore, this 
study applied the median value of cover rate [10] and 
Ratio of Non-dominated Individuals (RNI) [11], which 
can be compared the accuracy and the diversity of the 
pareto optimal solutions. The cover rate is the average 
value of the number of a region including the pareto 
optimal solutions divided by the number of all regions, 
where regions are generated dividing the objective space. 
Therefore, higher cover rate value means more diverse 
pareto optimal solutions (Fig. 4). RNI is the ratio of the 
number of the non-dominated solutions derived in each 
analysis divided by that of the entire set of the non-
dominated solutions derived in all analyses. Non-
dominated solution is described as the pareto optimal 
solution which dominates all others. Therefore, higher 
value means more similar to the true pareto optimal 
solutions (Fig. 5). The definition of the parameters in the 
analysis is summarized in Table 3. 
 
5.2 Result and discussion 

The analysis of this study derived the pareto optimal 
solutions for each parameter combination, and these 
Cover Rate and the RNI are shown in Fig. 6. Figure 6 (a) 
shows the cover rate is minimum at c1=4.10, c2=0.00. 
This means the smaller c2 causes the search considering 
each individual objective function (not considering both 
function). Additionally, Figure 6 (b) shows the RNI is 
maximum at c1 = 2.05, c2 = 2.05. This seems to be caused 
by the two reasons: the smaller c2 caused the issue 
described above and the larger c2 caused the local search. 
The latter is also pointed out by Carlisle [23]. Hence, the 
combination of the parameter values (c1 = 2.05, c2 = 2.05) 
is suitable in this design problem. The comparison of the 
pareto optimal solution (c1=2.05, c2=2.05) with the GA 
(conventional method) is shown in Fig. 7. This figure 
shows the proposed method derives the optimal design 
solution with higher robustness and smaller adjustable 
range compared to those by the conventional method. 
 

6 Conclusions 
The research proposed the robust multiple 

optimization method which optimize RA and the 
adjustable range in order to effectively derive the optimal 
adjustable ranges for adjustable mechanisms, focused 
evolutionary multi-objective optimization methods, and 
selected VEPSO. It is described in the following reason:  
those methods can derive many pareto optimal solutions 
using only a few parameters (without weighted 
coefficient, the aspiration level, etc.). Additionally, this. 
The proposed method was applied to seat design problem. 
In this application, it was confirmed that the proposed 
method can derive the design optimal solution with high 
robustness, small adjustable range and the appropriate 
parameters. 
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Feasible area of t3 0 ≤ θF ≤ 30

Max iteration 
number Tmax
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