The 3rd International Conference on Design Engineering and Science, ICDES 2014

Pilsen, Czech Republic, August 31 — September 3, 2014

The Principle of Duality in Data Structures
and Euler Operators of Solid Modelers
(The Quarter-edge Data Structure)

Masatoshi NIIZEKI *!
*1 Osaka Electro-Communication University
Department of Electro-Mechanical Engineering
18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, JAPAN

niizeki@isc.osakac.ac.jp

Abstract

A data structure and a set of Euler operators for
boundary representations of solid models in which the
principle of duality is strictly achieved are presented.
This new edge-based data structure is called the
quarter-edge data structure. A data structure with
complete symmetry between faces and vertices is
derived from the quarter-edge. This data structure
allows multiple loops of quarter-edges to belong to a
single vertex. Euler operators based on the
quarter-edge and this dual data structure make it
possible to use the same code to implement two dual
Euler operations. Duality in data structures and
programs contribute to the robustness and efficiency in
the implementation of solid modeling programs.
These concepts can be extended easily to non-manifold
solid models.

Keywords: geometric modeling
representations, solid models

boundary

1 Introduction
There are many fields of study within geometric

modeling where the principle of duality can be observed.

The principle of duality between faces and vertices of
the data structure of boundary represented solid models
has been pointed out in many papers [1], [8], [6]. This
duality in boundary represented solid modelers is also
seen in FEuler operators, which are the basic
modification functions for boundary representation data
structures.

Duality in geometric processing enables us to use
a common structure for a pair of data elements and
enables us to use common code for dual Euler
operations. This duality makes programming efficient
in size, execution speed and time required for
development and maintenance. The theoretical duality
of the data structure also guarantees the completeness
and reliability of the program.

Although the principle of duality in the data
structure and Euler operators of solid modelers has been
noted in literature, not much research has been
attempted to effectively exploit the underlying
possibilities of using the principle of duality in solid
modeling programs. For example, there seems to be
very few solid modelers which use the same code for a

Copyright © 2014, The Organizing Committee of the ICDES 2014

pair of Euler operations. One reason for this is that
duality in conventional data structures and Euler
operators is incomplete in manifold solid models.
Therefore, there has not been enough pursuit on the
theoretical aspects of duality in data structures and Euler
operations. The incompleteness of the duality in the
data structure and Euler operations have been partially
responsible for the inability to derive adequate data
structures for non-manifold models. In order to fully
incorporate the advantages of using the principle of
duality in solid modelers, we must derive a more
completely symmetric data structure.

This paper proposes a new edge-based data
structure called the quarter-edge data structure which
enables the programmer to have complete symmetry in
Euler operators and some other basic solid modeling
functions. A solid model representation based on this
data structure is derived, and Euler operators are
implemented for these solid models. This solid model
fully utilizes the duality between faces and vertices in
solid models. The topological data structure proposed
in this paper can be implemented in a solid model
combined with a geometric intersection computation
and detection library based on the principle of duality
between geometric entities, namely, points and planes.

2 Edge-based representation of solid models
2.1 Conventional edge-based data structures

(1) The winged-edge data structure

The winged-edge data structure (WE) is a
commonly used data structure for representing solid
models. The WE data structure is an edge-based data
structure, which means that solid models are represented
based on the connectivity of topological entities with
respect to edges [2], [3]. A conceptual diagram of the
WE data structure is shown in Fig. 1. The left part of
Fig. 1 illustrates the relative positions of the data
elements, which are stored as pointers, in the solid
model. Each WE stores pointers to the two faces and
the two vertices adjacent to the edge, represented
respectively as Face0, Facel, Vertex0, Vertexl in the
diagram. The other pointers are references to the WE
which are adjacent to this WE. Wcw0 and WcewO are
the Wes adjacent to this WE in a clockwise and
counter-clockwise order along FaceO0. Similarly,

Wewl and Weewl are the Wes adjacent to this WE in a
clockwise and counter-clockwise order along Facel.
The right part of Fig. 2 shows the pointers, which are
contained in a single WE. The original WE data
structure has problems representing solid models with
curved surfaces because it is unable to distinguish
between the different sides of the WE. A modified
version of the WE data structure corrected that problem
by adding information which distinguished which side
of each WE is connected to this WE.

Face0) Verte) | Vertexl
Face() Facel
Wow) Wowl
Yoo Wocw!

Fig. 1 Winged-edge data structure

It is easy to see that the WE data structure is
symmetrical with respect to faces and vertices, that is,
the structure retains information of faces and vertices in
an exactly identical form. A single record of data
which has this type of symmetry with respect to faces
and vertices can be called a self-dual element.
Although the WE is a self-dual data structure, the WE
data structure was originally designed to be able to
traverse edges along the boundary of a face. A WE
represents one whole edge as a single unit of memory
storage.

(2) The Half-edge data structure

Vertex
F
@) ace Heccwf/’ Heccr
h
(Hecwr)
Vertex'
otherh Face
otherh
(1) Pace-Edge Halfedge
Face
Face Hecwv
(HGCCWV\ h (Hecowv)
Vertex
~otherh Vertex
Hecwv Otmm

(2) Vertex-Edge Halfedge
Fig. 3 Half-edge data structure

The half-edge data structure (HE) represents an
edge in two separate parts [2], [3]. There are two
distinct types of HE data structures. They are the
face-edge (FE) type and the vertex-edge (VE) type.
The FE type is mainly used for traversal of half-edges
around faces, and the VE type is mainly used for

— 42—

traversal of half-edges around vertices. The field
names are shown for both types of half-edges in Figs. 2
and 3, respectively. The fields shown in parentheses
are not always necessary. These pointers are added for
reasons of access efficiency.

These two types of HE data structures hold either
face or vertex traversal information. The pointer
otherh represents the HE which represents the pair
half-edge belonging to the same edge to this HE. The
principle of duality can be seen in the FE and VE
half-edges. The FE structure and the VE structure are
each other’s dual entity. The main characteristic of
both of these data structures is that it represents an edge
in two separate parts.

Another type of HE data structure can be
constructed by combining the FE and VE data structures.
The combined half-edge data structure or FE-VE
half-edge shown in Fig. 4 simultaneously holds
half-edge pointers for traversal around both faces and
vertices. This data structure is very efficient from an
access complexity point of view. It enables the
efficient traversal of half-edges around faces and
vertices. But its pointers are redundant and store more
information than is absolutely necessary. Since this
data structure stores face and vertex adjacency
information in a symmetric fashion, it can also be
considered a self-dual data structure. All of these
half-edge types convey sufficient adjacency information
for the representation of the complete topology of a
solid model.

(Hecwf} Face pacour
(Hecowy h

Verte

Vertex
Hecowt
{Hecwf)

Face

Hecwv

(Heccwy)

Fig. 4 Half-edge data structure
(FE-VE combined type)

Recwy

The only drawback of the half-edge data structure is
the fact that the FE-VE half-edge is its own self-dual.
In the case where face adjacency and vertex adjacency
must be separated, the half-edge data structure cannot
be used.

2.2 The quarter-edge data structure

There is an alternative way to hold separate FE type
and VE type information in a solid model. If a
half-edge is separated into FE and VE adjacency
information, an edge is divided into four parts. This
structure can be called the Quarter-edge data structure
(QE), since edges are a combination of four QEs. The
pointer usage of a QE is shown in Fig. 5. QEs are
used as both FE type and VE type adjacency
information. Although there are two separate uses of
the QE, a single memory image can store the pointers
for both uses. The principle of duality holds between
the two uses of the QEs.

wrev) Face QneV Face/Vertex
Gorev) " a——— (@rev)
Vertex
Quair

At

Fig. S Quarter-edge data structure

The field Qpair in Fig. 5 store a pointer to a QE
which is paired together with the original QE to act as
on e FE-VE half-edge. The QE therefore has the same
representation capability as the FE-VE half-edge.

One major advantage of the use of QEs to the
other representations is that FE QEs and VE QEs can be
specified as different entities. This is necessary if
adjacency information must be specified as arguments
to functions which can operate around both faces and
vertices. For example, if an Euler operator is designed
to take QEs as arguments, the Euler operator will have a
different effect on a solid model depending on whether
it takes a FE QE, or a VE QE. This functionality is
necessary in order to program Euler operators for which
the principle of duality holds. As will be seen in the
following chapters, this cannot be done using self-dual
edge based representations.

2.3 Comparison with other data structures

The QE data structure is designed in a symmetric
fashion. The QE data structure is the only data
structure that can be used to distinguish between face
traversal and vertex traversal information. It uses
slightly more memory than the FE-VE type half-edge.
It also requires an extra step to switch between FE QEs
and VE QEs.

3 The principle of duality in solid models

The principle of duality in data structures holds
between faces and vertices. In order to create a solid
modeling system which uses a single common structure
for both faces and vertices, we will observe the basic
operations for these elements.

As an example of a case where the principle of
duality is applied so that a single source code can be
used for two purposes, we examine the geometric
computations and geometric intersection detections.

Duality can be observed in both the representation
and the computations involving points and planes. A
point in three-dimensional space is represented in
homogeneous coordinates by four coordinates. A
plane in three-dimensional space is represented in
homogeneous coefficients with four components. This
is the principle of duality in the representation of points
and planes. Geometric intersection detection
algorithms in three-dimensional space are combinations
of sign detections of determinants. There are
determinants of the homogeneous coordinates of points

and determinants of homogeneous coefficients of planes.

A procedure programed to compute the determinant of
the homogeneous coordinates of points can also be used
to compute the determinant of the homogeneous

—43—

coefficients of planes. A procedure programmed to
compute the determinant of the homogeneous
coordinates of points can also be used to compute the
determinant of the homogeneous coefficient of planes.
Functions for points can be used as functions for planes
without any modification. The difference in the
resulting effect of the function is caused only by the
difference in the interpretation of the input parameters.
Functions of this kind can be used for two different
purposes only when both the representation of the points
and planes, and the operations on points and planes are
identical within the program.

Edge

(e e J{ e

[]

Fig. 6 Conventional solid data structure

Returning to data structures of solid models, the
data structure in Fig. 6 shows the dependence
relationships of topological elements of a typical
representation of non-manifold solid models. This
representation in the figure is based on the quarter-edge
introduced in previous sections, but representation
based on Winged-edge or half-edge would be very
similar in form. This figure illustrates how the
symmetry in the data structure is incomplete because of
a missing topological element on the right-hand side of
the structure. There is no element on the right-hand
side, corresponding to the rings on the left-hand side.
The faces store pointers to rings while vertices store
pointers to quarter-edges. The reference data in faces
and vertices serve completely different purposes. Most
procedures built for conventional data structures cannot
be used for both faces and vertices without being
modified because of this discrepancy.

[&uar:eTr-eu;e]«—»[Edge H Quan}r-edge]

Fig. 7 Symmetrical solid data structure

A ring element in a solid model represents one
closed loop of edges (or QEs) which form a part of the
boundary of a face. Multiple rings are permitted to
exist inside of a single face. In order to create a
symmetric data structure, a new topological element
must be added which serves as counterpart for the ring
element. We call this element a disc. A disc element

represents a closed loop of edges (or QEs) which form a
part of the boundary of a vertex. Multiple discs may
exist inside of a vertex using this representation.
Manifold solid modelers should only permit a solid to
have one disc per vertex. An example of a
non-manifold solid with multiple discs in a single vertex
is shown in Fig. 8. There are three discs shown which
belong to the central vertex.

Fig. 8 Non-manifold solid represented by
symmetrical solid data structure

The introduction of a disc element enables us to
use faces and vertices in an equal way. A diagram of a
solid model representation with the disc element is
shown in Fig. 7. Observe the complete symmetry of
the structure. The face and the vertex, the ring and the
disc are just different uses of the same type of element.
The reference information stored in each element is
identical.

This representation is a superset of the
conventional manifold solid model representation, so
any manifold solid can be represented using this new
symmetrical structure.

4 The principle of duality in Euler
Operators
4.1 Dual Euler operators

The new data structure presented in previous
sections has a new topological element. The modified
Euler-Poincare equation for the solid models
represented using this data is shown below.

w—d)—e+(f—-r)=2(s—h)

v: vertices d: discs
e: edge

f: faces r: rings

s: shells h: holes

This equation is a subset of the equation already
established for non-manifold solid models in other
papers. A set of Euler operators which operate
according to this equation may as follows.

(1) mvfs (make vertex face shell), kvfs (kill

vertex face shell)

(2) mef (make edge face), kef (kill edge face)

(3) mev (make edge vertex), kev (kill edge

vertex)

(4) mekr (make edge kill ring), kemr (kill edge

make ring)

(5) mekd (make edge kill disc), kemd (kill edge

make disc)

(6) mfkrh (make face ill ring hole), kfmrh (kill

face make ring hole)

(7) mvkdh (make vertex kill disc hole), kvmdh
(kill vertex make disc hole)

The names of the Euler operators are shown along
with their inverse operations. These fourteen
operations are sufficient to create any solid model.

Conventional Euler operators for manifold solid
models can be considered to be subset of the new Euler
operators, so operations on solid models using
conventional Euler operators can be implemented using
the new Euler operators without any change.

The new Euler operators are built in pairs,
according to the principle of duality. All of the Euler
operators have corresponding operators obtained by
interchanging the words “face” and “vertex”, “ring” and
“disc.” The mvfs and kvfs operators are self-dual
operators. The duality relationships between the Euler
operators are shown below.

(1) mvfs, kvfs (self-duals)

(2) mef, kef < -- > meyv, kev

(3) mekr, kemr < -- > mekd, kemd

(4) mfkrh, kfmrh < -- > mvkdh, kvimdh

mvfs (1_ q0, ql
ASolid with at - - v
least one shell
kvfs 1

Fig. 9 mvfs, kvfs

(4}

o %

vl

ig. 11 mev, kev

(2}

-
2™

IYIRN 4
"”Y
— gl

kear

ri

Fig. 15 mvkdh, kvmdh

Only one code for the functions for each of the
pairs of Euler operators shown in the list is necessary.
The action of each function changes according to the
input arguments. For instance, one of the functions
should act as either operator mef or mev depending on
whether the inputs are face traversal or vertex traversal
quarter-edges. WEs and HEs are insufficient for this
purpose because they cannot distinguish whether they

_45—

are to be used to specify face adjacency or vertex
adjacency.

4.2 Basic data structure modifications by Euler

operators

The principle of duality also holds inside of each of
the new Euler operators implemented using
quarter-edges and the symmetric data structure. Since
a pair of Euler operators are implemented using a single
function, each individual modification operation has
two interpretations. This sections show the details of
the actions of an implementation of each individual
Euler operator. ~ The Euler operators which are
implemented using a single procedure are shown in
pairs. The corresponding subprocedures in the pairs
are given with the same number. Some of these
procedures may seem unfamiliar. It is obvious from
the principle of duality that every one of these
operations is necessary to construct an arbitrary solid
model. The duality of the Euler operators guarantees
that there are no missing subprocedures. Complete
Euler operators are obtained because of the principle of
duality.

(1) mvfs (make vertex face shell), kvfs (kill vertex
face shell)

The Euler operator mvfs creates a new shell, face,
vertex and a pair of quarter-edges. The operator
kvfs is the inverse operation. Figure 9 shows the
result of the operation.

mef (make edge face), kef (kill edge face) and mev
(make edge vertex), kev (kill edge vertex)

(@)

3

(4) The operator mef creates a new edge and face
inside of a face that already exists (Fig. 10). The
operator kef is the inverse operation. The

operator mev creates a new edge and vertex in an
old vertex (Fig. 11) The operator kev is the
inverse operation. Our implementation of mef
and mev each provides six different ways to create
new elements. The modifications in mef (kef)
and mev (kev) are completely symmetric.

mekr (make edge kill ring), kemr (kill edge make
ring) and mekd (make edge kill disc), kemd (kill
edge make disc)

The Euler operator mekr deletes a ring by
connecting two rings with an edge (Fig. 12). Two
separate rings of quarter-edges are obtained from
the operation. The operator kemr creates a new
ring by removing an edge. On the other hand, the
Euler operator mekd deletes a disc by connecting
two discs with an edge (Fig 13). Two separate
discs of quarter-edges are obtained from the
operation. The operator creates a new disc by
removing an edge.

mfkrh (make face kill ring hole) , kfmrh (kill face
make ring hole) and mvkdh (make vertex kill disc
hole), kvmdh The Euler operator mfkrh removes
a penetrating hole from a shell by creating a new
fae from a ring (Fig. 14). The kfmrh operator is
the inverse of mfkrh. The operator mvkdh
removes a penetrating hole from a shell by creating
a new vertex from a disc (Fig. 15). The kvmdh
operator is the inverse operation.

(6))

(6)

(M

5 Applications
5.1 Duality in primitive solid models

Most solid modelers provide some primitive solid
models which can be created by specifying a small
number of parameters. These primitive solids are
modified and combined to obtain the intended model.
Solid models created using the data structure and the
Euler operators in the previous sections can be
interpreted as two different solids. Therefore, each
function for crating primitive solid models can be used
for a pair of two different solids as can be seen in Fig.
16.

K

Fig. 16 Dual Shapes created by shared source code

5.2 Application to non-manifold solid models
Many methods have been proposed for the

_46—

boundary representations of non-manifold solid models.
The conventional manifold solid models do not
necessarily require complete symmetry between faces
and vertices. However, in a non-manifold modeler, the
principle of duality can serve as a criteria for checking if
the representation has sufficient capabilities. Research
concerning non-manifold representations is often based
on an extension of the Winged-edge or half-edge
structure. The quarter-edge structure has the most
powerful specification capabilities of any of the edge
based data structures in that the quarter-edge can be
used to distinguish between face adjacency and vertex
adjacency.

6 Conclusions

The quarter-edge data structure has been proposed
as a method of realizing the principle of duality in solid
model representations. A symmetrical data structure
combined with quarter-edge is necessary to implement
Euler operators which can be used for dual operations.
The quarter-edge representation is powerful in that face
adjacency and vertex adjacency can be distinguished.

A simple solid modeling system with a set of dual
Euler operators was implemented using this data
structure. The data structure and Euler operators were
used in much the same fashion as conventional ones.
Although a quantitative comparison cannot be presented,
the new representation and Euler operators are more
theoretically sound and is more suitable for extension to
non-manifold solid models.

References
[1] M. Mantyla, “A Note on the Modeling Space of
Euler Operators,” Computer Vision, Graphics and
Image Processing, 26, (1984) 45.
[2] F. Yamaguchi, M. Niizeki, A New Paradigm for
Geometric Processing,” Computer Graphics Forum,

Vol. 12, No. 3, Conference issue for
EUROGRAPHICS 93, September 1993, pp. C-177
- C-188.

[3] K. Weiler, “Edge-Based Data Structures for Solid
Modeling in Cured-Surface Environments,” TEEE
CG&A, (1985), 21.

[4] K. Weiler, “Boundary Graph Operators for
non-Manifold Geometric Modeling Topology
Representations,” Geometric Modeling for CAD
Applications, M. J. Wozny, H. W. McLaughlin, J.L.
Encarnacao eds., IFIP, (1988) 37.

[5] H. S. M. Coxeter, “Introduction to Geometry,” John
Wiley and Sons, (1961).

[6] T. C. Woo, J. D. Wolter, ”A Constant Expected Time,
Linear Storage Data Structure for Representing
Three-Dimensional Objects, “IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-14, No.
3, May/June 1984, pp.510—515.

Received on December 30, 2013
Accepted on February 3, 2014

