
presented that are, to a great extent, weaker than the 
original model of Al-Riyami–Paterson [2]. In 2008, 
Dent reviewed almost all the security models for 
certificateless encryption [20]. The notion of a 
certificateless public-key encryption scheme was first 
introduced by Al-Riyami and Paterson [2, 3].  
 
There are three different architectures for CL-PKC: 
(a) AP Formulation: In the original Al-Riyami and 

Paterson (AP) formulation [21, 22], the receiver can 
generate their public key at any time. This means 
that the receiver can publish their public key before 
receiving their partial private key from the key 
generation centre. 

(b) BSS Formulation: In the Baek, Safavi-Naini and 
Susilo (BSS) formulation [23], the receiver can only 
generate their public key after receiving the partial 
private key. The partial private key is obtained via a 
single secure message from the key generation 
centre.  

(c) LK-Formulation: In the Lai and Kou (LK) 
formulation [24], the receiver can only generate their 
public key after completing a protocol with the key 
generation centre.  

 
6 Conclusion  

In this paper, the different types of cryptosystems 
available to date have been reviewed. We have provided 
several comparison tables between different 
cryptographic concepts and algorithms, in addition to 
comparing the strengths and weaknesses of different 
schemes. Since there is no absolutely perfect encryption 
scheme that suits all situations, a comparative study is 
very important for most researchers who want to know 
the most appropriate encryption scheme for use in their 
work.  
 

References  
[1] A. Menezes, P. van Oorschot and S. Vanstone, 

Handbook of Applied Cryptography, CRC Press, Inc., 
(1997).  

[2]  Sattam S. Al-Riyami and Kenneth Paterson, 
“Certificateless public key cryptography”, Springer 
Berlin / Heidelberg, (2003). 

[3] Sattam S. Al-Riyami., Cryptographic schemes based 
on elliptic curve pairings, PhD thesis, Royal 
Holloway, University of London, (2004).  

[4] R.L. Rivest., “The RC4 Encryption Algorithm”, 
RSA Data Security Inc., (1992). 

[5] P. Rogaway and D. Coppersmith, “A 
software-optimized encryption algorithm”, 
Springer-Verlag, Berlin, (1994), pp. 56-63. 

[6] K. Suwais, A. Samsudin, “New Classification of 
Existing Stream Ciphers”, Computational 
Intelligence   and modern heuristics, (2010). 

[7] S. Landau, Standing the Test of Time: The Data 
Encryption Standard, Notices of the AMS, vol. 47(3), 
(2000), pp. 341-349. 

[8] United States Department of Commerce, National 
Bureau of Standards, Federal Information Processing 

(FIPS), Publication no. 46, Data Encryption 
Standard, (1977). 

[9] M. Matsui, “Linear Cryptanalysis Method for DES 
Cipher”, In Advances in 
Cryptology-EUROCRYPT’93, LNCS 765, 
Springer-Verlag, (1994), pp. 386-397. 

[10] E. Biham and A. Shamir, “Differential 
Cryptanalysis of Des-like Cryptosystems”, Journal 
of Cryptology, vol. 4(1), (1991), pp. 3-72. 

[11] National Institute of Standards and Technology 
(NIST), U.S. Federal Information Processing 
Publication (FIPS PUB 197), The Advanced 
Encryption Standard,  November 26, (2001). 

[12]  Amber Jain, Investigation of Symmetric Block 
Cipher Algorithms, master dissertation, (2011).  

[13] Bruce Schneier , Applied Cryptography: Protocols, 
Algorithms, and Source Code in C, 2nd Edition, 
(1996). 

[14]  W. Diffie and M.E. Hellman, “New Directions in 
Cryptography”, IEEE Transactions on Information 
Theory, vol. 22, (1976), pp. 644-654. 

[15] R.L. Rivest, A. Shamir and L. Adleman, “A Method  
for Obtaining Digital Signatures and Public Key 
Cryptosystems”, Communications to the ACM, vol. 
21, (1978), pp. 120-126. 

[16] T. ElGamal, “A Public Key Cryptosystem and a 
Signature Scheme Based on Discrete Logarithms”, 
IEEE Transactions on Information Theory, vol. 31, 
(1985), pp. 469-472. 

[17] A. Shamir., “Identity-based Cryptosystems and 
Signature Schemes”, Proc. Crypto ’84, LNCS, Vol. 
196, Springer, (1985), pp. 47-53. 

[18] D. Boneh and M. Franklin, “Identity Based 
Encryption from the Weil Pairing”, In Advances in 
Cryptology- CRYPTO 2001, LNCS 2139, Springer, 
(2001). 

[19] J.C. Cha and J.H. Cheon, “An Identity-Based 
Signature from Gap Diffie-Hellman Groups”, In 
Proceedings of PKC’03, LNCS 2567, 
Springer-Verlag, (2003), pp. 18-30. 

[20] Alexander w. dent, Benoît Libert & Kenneth G. 
Paterson, “Certificateless Encryption Schemes 
Strongly Secure in the Standard Model In Public 
Key Cryptography”, Springer. ISBN 
978-3-540-78439-5, (2008).  

[21] S. Al-Riyami, Cryptographic schemes based on, 
elliptic curve pairings, PhD thesis, Royal 
Holloway,University of London, (2004). 

[22] S. Al-Riyami and K. G. Paterson, “Certificateless 
public key cryptography”, Springer-Verlag, 
(2003). 

[23] J. Baek, R. Safavi-Naini and W. Susilo, 
“Certificateless public key encryption without 
pairing”,  Springer-Verlag, (2005). 

[24] J. Lai and K. Kou, “Self-generated-certificate 
public key encryption without pairing”, 
Springer-Verlag, (2007). 

 
Received on December 30, 2013 
Accepted on January 31, 2014

 
 

The 3rd International Conference on Design Engineering and Science, ICDES 2014 
Pilsen, Czech Republic, September 1-3, 2014 

Copyright © 2014, The Organizing Committee of the ICDES 2014 

 
The Principle of Duality in Data Structures  

and Euler Operators of Solid Modelers  
(The Quarter-edge Data Structure) 

 
Masatoshi NIIZEKI *1 

*1   Osaka Electro-Communication University 
Department of Electro-Mechanical Engineering 
18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, JAPAN 
niizeki@isc.osakac.ac.jp 

 
 

Abstract 
A data structure and a set of Euler operators for 
boundary representations of solid models in which the 
principle of duality is strictly achieved are presented. 
This new edge-based data structure is called the 
quarter-edge data structure. A data structure with 
complete symmetry between faces and vertices is 
derived from the quarter-edge.  This data structure 
allows multiple loops of quarter-edges to belong to a 
single vertex.  Euler operators based on the 
quarter-edge and this dual data structure make it 
possible to use the same code to implement two dual 
Euler operations. Duality in data structures and 
programs contribute to the robustness and efficiency in 
the implementation of solid modeling programs.  
These concepts can be extended easily to non-manifold 
solid models.  
Keywords: geometric modeling ， boundary 
representations，solid models  
 

1 Introduction 
There are many fields of study within geometric 

modeling where the principle of duality can be observed.  
The principle of duality between faces and vertices of 
the data structure of boundary represented solid models 
has been pointed out in many papers [1], [8], [6].  This 
duality in boundary represented solid modelers is also 
seen in Euler operators, which are the basic 
modification functions for boundary representation data 
structures.  

Duality in geometric processing enables us to use 
a common structure for a pair of data elements and 
enables us to use common code for dual Euler 
operations.  This duality makes programming efficient 
in size ， execution speed and time required for 
development and maintenance. The theoretical duality 
of the data structure also guarantees the completeness 
and reliability of the program.   

Although the principle of duality in the data 
structure and Euler operators of solid modelers has been 
noted in literature，  not much research has been 
attempted to effectively exploit the underlying 
possibilities of using the principle of duality in solid 
modeling programs.  For example， there seems to be 
very few solid modelers which use the same code for a 

pair of Euler operations.  One reason for this is that 
duality in conventional data structures and Euler 
operators is incomplete in manifold solid models．
Therefore，there has not been enough pursuit on the 
theoretical aspects of duality in data structures and Euler 
operations.  The incompleteness of the duality in the 
data structure and Euler operations have been partially 
responsible for the inability to derive adequate data 
structures for non-manifold models． In order to fully 
incorporate the advantages of using the principle of 
duality in solid modelers, we must derive a more 
completely symmetric data structure. 

This paper proposes a new edge-based data 
structure called the quarter-edge data structure which 
enables the programmer to have complete symmetry in 
Euler operators and some other basic solid modeling 
functions.  A solid model representation based on this 
data structure is derived， and Euler operators are 
implemented for these solid models.  This solid model 
fully utilizes the duality between faces and vertices in 
solid models.  The topological data structure proposed 
in this paper can be implemented in a solid model 
combined with a geometric intersection computation 
and detection library based on the principle of duality 
between geometric entities, namely, points and planes. 

 
2 Edge-based representation of solid models  
2.1 Conventional edge-based data structures  
(1) The winged-edge data structure 

The winged-edge data structure (WE) is a 
commonly used data structure for representing solid 
models.  The WE data structure is an edge-based data 
structure, which means that solid models are represented 
based on the connectivity of topological entities with 
respect to edges [2], [3].  A conceptual diagram of the 
WE data structure is shown in Fig. 1.  The left part of 
Fig. 1 illustrates the relative positions of the data 
elements, which are stored as pointers, in the solid 
model.  Each WE stores pointers to the two faces and 
the two vertices adjacent to the edge, represented 
respectively as Face0, Face1, Vertex0, Vertex1 in the 
diagram. The other pointers are references to the WE 
which are adjacent to this WE．Wcw0 and Wccw0 are 
the Wes adjacent to this WE in a clockwise and 
counter-clockwise order along Face0.  Similarly, 

– 40 – – 41 – 

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, August 31 – September 3, 2014



Wcw1 and Wccw1 are the Wes adjacent to this WE in a 
clockwise and counter-clockwise order along Face1.  
The right part of Fig. 2 shows the pointers, which are 
contained in a single WE.  The original WE data 
structure has problems representing solid models with 
curved surfaces because it is unable to distinguish 
between the different sides of the WE.  A modified 
version of the WE data structure corrected that problem 
by adding information which distinguished which side 
of each WE is connected to this WE.  

Fig. 1 Winged-edge data structure 
 

     It is easy to see that the WE data structure is 
symmetrical with respect to faces and vertices, that is, 
the structure retains information of faces and vertices in 
an exactly identical form.  A single record of data 
which has this type of symmetry with respect to faces 
and vertices can be called a self-dual element.  
Although the WE is a self-dual data structure, the WE 
data structure was originally designed to be able to 
traverse edges along the boundary of a face.  A WE 
represents one whole edge as a single unit of memory 
storage.   
 (2) The Half-edge data structure 

 
Fig. 3 Half-edge data structure  
 
The half-edge data structure (HE) represents an 

edge in two separate parts [2], [3].  There are two 
distinct types of HE data structures.  They are the 
face-edge (FE) type and the vertex-edge (VE) type.  
The FE type is mainly used for traversal of half-edges 
around faces, and the VE type is mainly used for 

traversal of half-edges around vertices.  The field 
names are shown for both types of half-edges in Figs. 2 
and 3, respectively.  The fields shown in parentheses 
are not always necessary.  These pointers are added for 
reasons of access efficiency.   

These two types of HE data structures hold either 
face or vertex traversal information.  The pointer 
otherh represents the HE which represents the pair 
half-edge belonging to the same edge to this HE.  The 
principle of duality can be seen in the FE and VE 
half-edges.  The FE structure and the VE structure are 
each other’s dual entity.  The main characteristic of 
both of these data structures is that it represents an edge 
in two separate parts.   

Another type of HE data structure can be 
constructed by combining the FE and VE data structures.  
The combined half-edge data structure or FE-VE 
half-edge shown in Fig. 4 simultaneously holds 
half-edge pointers for traversal around both faces and 
vertices. This data structure is very efficient from an 
access complexity point of view.  It enables the 
efficient traversal of half-edges around faces and 
vertices.  But its pointers are redundant and store more 
information than is absolutely necessary.  Since this 
data structure stores face and vertex adjacency 
information in a symmetric fashion, it can also be 
considered a self-dual data structure.  All of these 
half-edge types convey sufficient adjacency information 
for the representation of the complete topology of a 
solid model.   

 

Fig. 4 Half-edge data structure 
 (FE-VE combined type) 

 
 The only drawback of the half-edge data structure is 
the fact that the FE-VE half-edge is its own self-dual.  
In the case where face adjacency and vertex adjacency 
must be separated, the half-edge data structure cannot 
be used.   
2.2 The quarter-edge data structure  
  There is an alternative way to hold separate FE type 
and VE type information in a solid model.  If a 
half-edge is separated into FE and VE adjacency 
information, an edge is divided into four parts.  This 
structure can be called the Quarter-edge data structure 
(QE), since edges are a combination of four QEs.  The 
pointer usage of a QE is shown in Fig. 5.  QEs are 
used as both FE type and VE type adjacency 
information.  Although there are two separate uses of 
the QE, a single memory image can store the pointers 
for both uses.  The principle of duality holds between 
the two uses of the QEs.   

Fig. 5 Quarter-edge data structure 
 

The field Qpair in Fig. 5 store a pointer to a QE 
which is paired together with the original QE to act as 
on e FE-VE half-edge.  The QE therefore has the same 
representation capability as the FE-VE half-edge.   
     One major advantage of the use of QEs to the 
other representations is that FE QEs and VE QEs can be 
specified as different entities.  This is necessary if 
adjacency information must be specified as arguments 
to functions which can operate around both faces and 
vertices.  For example, if an Euler operator is designed 
to take QEs as arguments, the Euler operator will have a 
different effect on a solid model depending on whether 
it takes a FE QE, or a VE QE.  This functionality is 
necessary in order to program Euler operators for which 
the principle of duality holds.  As will be seen in the 
following chapters, this cannot be done using self-dual 
edge based representations.  
2.3 Comparison with other data structures  

The QE data structure is designed in a symmetric 
fashion.  The QE data structure is the only data 
structure that can be used to distinguish between face 
traversal and vertex traversal information.  It uses 
slightly more memory than the FE-VE type half-edge.  
It also requires an extra step to switch between FE QEs 
and VE QEs. 

 
3 The principle of duality in solid models 

The principle of duality in data structures holds 
between faces and vertices.  In order to create a solid 
modeling system which uses a single common structure 
for both faces and vertices, we will observe the basic 
operations for these elements.  

As an example of a case where the principle of 
duality is applied so that a single source code can be 
used for two purposes, we examine the geometric 
computations and geometric intersection detections.   

Duality can be observed in both the representation 
and the computations involving points and planes.  A 
point in three-dimensional space is represented in 
homogeneous coordinates by four coordinates.  A 
plane in three-dimensional space is represented in 
homogeneous coefficients with four components.  This 
is the principle of duality in the representation of points 
and planes.  Geometric intersection detection 
algorithms in three-dimensional space are combinations 
of sign detections of determinants.  There are 
determinants of the homogeneous coordinates of points 
and determinants of homogeneous coefficients of planes.  
A procedure programed to compute the determinant of 
the homogeneous coordinates of points can also be used 
to compute the determinant of the homogeneous 

coefficients of planes.  A procedure programmed to 
compute the determinant of the homogeneous 
coordinates of points can also be used to compute the 
determinant of the homogeneous coefficient of planes.  
Functions for points can be used as functions for planes 
without any modification.  The difference in the 
resulting effect of the function is caused only by the 
difference in the interpretation of the input parameters.  
Functions of this kind can be used for two different 
purposes only when both the representation of the points 
and planes, and the operations on points and planes are 
identical within the program.   

Fig. 6 Conventional solid data structure 
 
Returning to data structures of solid models, the 

data structure in Fig. 6 shows the dependence 
relationships of topological elements of a typical 
representation of non-manifold solid models.   This 
representation in the figure is based on the quarter-edge 
introduced in previous sections, but representation 
based on Winged-edge or half-edge would be very 
similar in form.  This figure illustrates how the 
symmetry in the data structure is incomplete because of 
a missing topological element on the right-hand side of 
the structure.  There is no element on the right-hand 
side, corresponding to the rings on the left-hand side.  
The faces store pointers to rings while vertices store 
pointers to quarter-edges.  The reference data in faces 
and vertices serve completely different purposes.  Most 
procedures built for conventional data structures cannot 
be used for both faces and vertices without being 
modified because of this discrepancy.   

Fig. 7 Symmetrical solid data structure  
 
A ring element in a solid model represents one 

closed loop of edges (or QEs) which form a part of the 
boundary of a face.  Multiple rings are permitted to 
exist inside of a single face.  In order to create a 
symmetric data structure, a new topological element 
must be added which serves as counterpart for the ring 
element.  We call this element a disc.  A disc element 

– 42 – – 43 – 



Wcw1 and Wccw1 are the Wes adjacent to this WE in a 
clockwise and counter-clockwise order along Face1.  
The right part of Fig. 2 shows the pointers, which are 
contained in a single WE.  The original WE data 
structure has problems representing solid models with 
curved surfaces because it is unable to distinguish 
between the different sides of the WE.  A modified 
version of the WE data structure corrected that problem 
by adding information which distinguished which side 
of each WE is connected to this WE.  

Fig. 1 Winged-edge data structure 
 

     It is easy to see that the WE data structure is 
symmetrical with respect to faces and vertices, that is, 
the structure retains information of faces and vertices in 
an exactly identical form.  A single record of data 
which has this type of symmetry with respect to faces 
and vertices can be called a self-dual element.  
Although the WE is a self-dual data structure, the WE 
data structure was originally designed to be able to 
traverse edges along the boundary of a face.  A WE 
represents one whole edge as a single unit of memory 
storage.   
 (2) The Half-edge data structure 

 
Fig. 3 Half-edge data structure  
 
The half-edge data structure (HE) represents an 

edge in two separate parts [2], [3].  There are two 
distinct types of HE data structures.  They are the 
face-edge (FE) type and the vertex-edge (VE) type.  
The FE type is mainly used for traversal of half-edges 
around faces, and the VE type is mainly used for 

traversal of half-edges around vertices.  The field 
names are shown for both types of half-edges in Figs. 2 
and 3, respectively.  The fields shown in parentheses 
are not always necessary.  These pointers are added for 
reasons of access efficiency.   

These two types of HE data structures hold either 
face or vertex traversal information.  The pointer 
otherh represents the HE which represents the pair 
half-edge belonging to the same edge to this HE.  The 
principle of duality can be seen in the FE and VE 
half-edges.  The FE structure and the VE structure are 
each other’s dual entity.  The main characteristic of 
both of these data structures is that it represents an edge 
in two separate parts.   

Another type of HE data structure can be 
constructed by combining the FE and VE data structures.  
The combined half-edge data structure or FE-VE 
half-edge shown in Fig. 4 simultaneously holds 
half-edge pointers for traversal around both faces and 
vertices. This data structure is very efficient from an 
access complexity point of view.  It enables the 
efficient traversal of half-edges around faces and 
vertices.  But its pointers are redundant and store more 
information than is absolutely necessary.  Since this 
data structure stores face and vertex adjacency 
information in a symmetric fashion, it can also be 
considered a self-dual data structure.  All of these 
half-edge types convey sufficient adjacency information 
for the representation of the complete topology of a 
solid model.   

 

Fig. 4 Half-edge data structure 
 (FE-VE combined type) 

 
 The only drawback of the half-edge data structure is 
the fact that the FE-VE half-edge is its own self-dual.  
In the case where face adjacency and vertex adjacency 
must be separated, the half-edge data structure cannot 
be used.   
2.2 The quarter-edge data structure  
  There is an alternative way to hold separate FE type 
and VE type information in a solid model.  If a 
half-edge is separated into FE and VE adjacency 
information, an edge is divided into four parts.  This 
structure can be called the Quarter-edge data structure 
(QE), since edges are a combination of four QEs.  The 
pointer usage of a QE is shown in Fig. 5.  QEs are 
used as both FE type and VE type adjacency 
information.  Although there are two separate uses of 
the QE, a single memory image can store the pointers 
for both uses.  The principle of duality holds between 
the two uses of the QEs.   

Fig. 5 Quarter-edge data structure 
 

The field Qpair in Fig. 5 store a pointer to a QE 
which is paired together with the original QE to act as 
on e FE-VE half-edge.  The QE therefore has the same 
representation capability as the FE-VE half-edge.   
     One major advantage of the use of QEs to the 
other representations is that FE QEs and VE QEs can be 
specified as different entities.  This is necessary if 
adjacency information must be specified as arguments 
to functions which can operate around both faces and 
vertices.  For example, if an Euler operator is designed 
to take QEs as arguments, the Euler operator will have a 
different effect on a solid model depending on whether 
it takes a FE QE, or a VE QE.  This functionality is 
necessary in order to program Euler operators for which 
the principle of duality holds.  As will be seen in the 
following chapters, this cannot be done using self-dual 
edge based representations.  
2.3 Comparison with other data structures  

The QE data structure is designed in a symmetric 
fashion.  The QE data structure is the only data 
structure that can be used to distinguish between face 
traversal and vertex traversal information.  It uses 
slightly more memory than the FE-VE type half-edge.  
It also requires an extra step to switch between FE QEs 
and VE QEs. 

 
3 The principle of duality in solid models 

The principle of duality in data structures holds 
between faces and vertices.  In order to create a solid 
modeling system which uses a single common structure 
for both faces and vertices, we will observe the basic 
operations for these elements.  

As an example of a case where the principle of 
duality is applied so that a single source code can be 
used for two purposes, we examine the geometric 
computations and geometric intersection detections.   

Duality can be observed in both the representation 
and the computations involving points and planes.  A 
point in three-dimensional space is represented in 
homogeneous coordinates by four coordinates.  A 
plane in three-dimensional space is represented in 
homogeneous coefficients with four components.  This 
is the principle of duality in the representation of points 
and planes.  Geometric intersection detection 
algorithms in three-dimensional space are combinations 
of sign detections of determinants.  There are 
determinants of the homogeneous coordinates of points 
and determinants of homogeneous coefficients of planes.  
A procedure programed to compute the determinant of 
the homogeneous coordinates of points can also be used 
to compute the determinant of the homogeneous 

coefficients of planes.  A procedure programmed to 
compute the determinant of the homogeneous 
coordinates of points can also be used to compute the 
determinant of the homogeneous coefficient of planes.  
Functions for points can be used as functions for planes 
without any modification.  The difference in the 
resulting effect of the function is caused only by the 
difference in the interpretation of the input parameters.  
Functions of this kind can be used for two different 
purposes only when both the representation of the points 
and planes, and the operations on points and planes are 
identical within the program.   

Fig. 6 Conventional solid data structure 
 
Returning to data structures of solid models, the 

data structure in Fig. 6 shows the dependence 
relationships of topological elements of a typical 
representation of non-manifold solid models.   This 
representation in the figure is based on the quarter-edge 
introduced in previous sections, but representation 
based on Winged-edge or half-edge would be very 
similar in form.  This figure illustrates how the 
symmetry in the data structure is incomplete because of 
a missing topological element on the right-hand side of 
the structure.  There is no element on the right-hand 
side, corresponding to the rings on the left-hand side.  
The faces store pointers to rings while vertices store 
pointers to quarter-edges.  The reference data in faces 
and vertices serve completely different purposes.  Most 
procedures built for conventional data structures cannot 
be used for both faces and vertices without being 
modified because of this discrepancy.   

Fig. 7 Symmetrical solid data structure  
 
A ring element in a solid model represents one 

closed loop of edges (or QEs) which form a part of the 
boundary of a face.  Multiple rings are permitted to 
exist inside of a single face.  In order to create a 
symmetric data structure, a new topological element 
must be added which serves as counterpart for the ring 
element.  We call this element a disc.  A disc element 

– 42 – – 43 – 



represents a closed loop of edges (or QEs) which form a 
part of the boundary of a vertex.  Multiple discs may 
exist inside of a vertex using this representation.  
Manifold solid modelers should only permit a solid to 
have one disc per vertex.  An example of a 
non-manifold solid with multiple discs in a single vertex 
is shown in Fig. 8.  There are three discs shown which 
belong to the central vertex.   

Fig. 8 Non-manifold solid represented by 
symmetrical solid data structure 

 
The introduction of a disc element enables us to 

use faces and vertices in an equal way.  A diagram of a 
solid model representation with the disc element is 
shown in Fig. 7.  Observe the complete symmetry of 
the structure.  The face and the vertex, the ring and the 
disc are just different uses of the same type of element.  
The reference information stored in each element is 
identical.   

This representation is a superset of the 
conventional manifold solid model representation, so 
any manifold solid can be represented using this new 
symmetrical structure.  

 
4 The principle of duality in Euler 

Operators  
4.1 Dual Euler operators  

The new data structure presented in previous 
sections has a new topological element.  The modified 
Euler-Poincare equation for the solid models 
represented using this data is shown below.   

 
(𝑣𝑣 − 𝑑𝑑) − 𝑒𝑒 + (𝑓𝑓 − 𝑟𝑟) = 2(𝑠𝑠 − ℎ) 

v:  vertices  d:  discs 
e:  edge      
f:  faces    r:  rings 
s:  shells   h:  holes 
This equation is a subset of the equation already 

established for non-manifold solid models in other 
papers.  A set of Euler operators which operate 
according to this equation may as follows.   

(1) mvfs (make vertex face shell), kvfs (kill 
vertex face shell) 

(2) mef (make edge face), kef (kill edge face) 
(3) mev (make edge vertex), kev (kill edge 

vertex) 
(4) mekr (make edge kill ring), kemr (kill edge 

make ring) 
(5) mekd (make edge kill disc), kemd (kill edge 

make disc) 
(6) mfkrh (make face ill ring hole), kfmrh (kill 

face make ring hole) 

(7) mvkdh (make vertex kill disc hole), kvmdh 
(kill vertex make disc hole) 

The names of the Euler operators are shown along 
with their inverse operations.  These fourteen 
operations are sufficient to create any solid model.   

Conventional Euler operators for manifold solid 
models can be considered to be subset of the new Euler 
operators, so operations on solid models using 
conventional Euler operators can be implemented using 
the new Euler operators without any change.   

The new Euler operators are built in pairs, 
according to the principle of duality.  All of the Euler 
operators have corresponding operators obtained by 
interchanging the words “face” and “vertex”, “ring” and 
“disc.”  The mvfs and kvfs operators are self-dual 
operators.  The duality relationships between the Euler 
operators are shown below.   

(1) mvfs, kvfs (self-duals) 
(2) mef, kef < -- > mev, kev 
(3) mekr, kemr < -- > mekd, kemd  
(4) mfkrh, kfmrh < -- > mvkdh, kvmdh 
 

 
Fig. 9 mvfs, kvfs 

 

 
Fig. 10 mef, kef  

 

 

Fig. 11 mev, kev 

 
Fig. 12 mekr, kemr 

 

 
Fig. 13 mekd, kemd 

 

 
Fig. 14 mfkrh, kfmrh 

 

 
Fig. 15 mvkdh, kvmdh 

 
Only one code for the functions for each of the 

pairs of Euler operators shown in the list is necessary.  
The action of each function changes according to the 
input arguments.  For instance, one of the functions 
should act as either operator mef or mev depending on 
whether the inputs are face traversal or vertex traversal 
quarter-edges.  WEs and HEs are insufficient for this 
purpose because they cannot distinguish whether they 

are to be used to specify face adjacency or vertex 
adjacency. 
4.2 Basic data structure modifications by Euler 

operators  
The principle of duality also holds inside of each of 

the new Euler operators implemented using 
quarter-edges and the symmetric data structure.  Since 
a pair of Euler operators are implemented using a single 
function, each individual modification operation has 
two interpretations.  This sections show the details of 
the actions of an implementation of each individual 
Euler operator.  The Euler operators which are 
implemented using a single procedure are shown in 
pairs.  The corresponding subprocedures in the pairs 
are given with the same number.  Some of these 
procedures may seem unfamiliar.  It is obvious from 
the principle of duality that every one of these 
operations is necessary to construct an arbitrary solid 
model.  The duality of the Euler operators guarantees 
that there are no missing subprocedures.  Complete 
Euler operators are obtained because of the principle of 
duality.   
(1) mvfs (make vertex face shell), kvfs (kill vertex 

face shell) 
(2) The Euler operator mvfs creates a new shell, face, 

vertex and a pair of quarter-edges.  The operator 
kvfs is the inverse operation.  Figure 9 shows the 
result of the operation.   

(3) mef (make edge face), kef (kill edge face) and mev 
(make edge vertex), kev (kill edge vertex) 

(4) The operator mef creates a new edge and face 
inside of a face that already exists (Fig. 10).  The 
operator kef is the inverse operation.  The 
operator mev creates a new edge and vertex in an 
old vertex (Fig. 11)  The operator kev is the 
inverse operation.  Our implementation of mef 
and mev each provides six different ways to create 
new elements.  The modifications in mef (kef) 
and mev (kev) are completely symmetric.   

(5) mekr (make edge kill ring), kemr (kill edge make 
ring) and mekd (make edge kill disc), kemd (kill 
edge make disc)  

(6) The Euler operator mekr deletes a ring by 
connecting two rings with an edge (Fig. 12).  Two 
separate rings of quarter-edges are obtained from 
the operation.  The operator kemr creates a new 
ring by removing an edge.  On the other hand, the 
Euler operator mekd deletes a disc by connecting 
two discs with an edge (Fig 13).  Two separate 
discs of quarter-edges are obtained from the 
operation.  The operator creates a new disc by 
removing an edge.   

(7) mfkrh (make face kill ring hole) , kfmrh (kill face 
make ring hole) and mvkdh (make vertex kill disc 
hole), kvmdh  The Euler operator mfkrh removes 
a penetrating hole from a shell by creating a new 
fae from a ring (Fig. 14).  The kfmrh operator is 
the inverse of mfkrh.  The operator mvkdh 
removes a penetrating hole from a shell by creating 
a new vertex from a disc (Fig. 15).  The kvmdh 
operator is the inverse operation. 
 

– 44 – – 45 – 



represents a closed loop of edges (or QEs) which form a 
part of the boundary of a vertex.  Multiple discs may 
exist inside of a vertex using this representation.  
Manifold solid modelers should only permit a solid to 
have one disc per vertex.  An example of a 
non-manifold solid with multiple discs in a single vertex 
is shown in Fig. 8.  There are three discs shown which 
belong to the central vertex.   

Fig. 8 Non-manifold solid represented by 
symmetrical solid data structure 

 
The introduction of a disc element enables us to 

use faces and vertices in an equal way.  A diagram of a 
solid model representation with the disc element is 
shown in Fig. 7.  Observe the complete symmetry of 
the structure.  The face and the vertex, the ring and the 
disc are just different uses of the same type of element.  
The reference information stored in each element is 
identical.   

This representation is a superset of the 
conventional manifold solid model representation, so 
any manifold solid can be represented using this new 
symmetrical structure.  

 
4 The principle of duality in Euler 

Operators  
4.1 Dual Euler operators  

The new data structure presented in previous 
sections has a new topological element.  The modified 
Euler-Poincare equation for the solid models 
represented using this data is shown below.   

 
(𝑣𝑣 − 𝑑𝑑) − 𝑒𝑒 + (𝑓𝑓 − 𝑟𝑟) = 2(𝑠𝑠 − ℎ) 

v:  vertices  d:  discs 
e:  edge      
f:  faces    r:  rings 
s:  shells   h:  holes 
This equation is a subset of the equation already 

established for non-manifold solid models in other 
papers.  A set of Euler operators which operate 
according to this equation may as follows.   

(1) mvfs (make vertex face shell), kvfs (kill 
vertex face shell) 

(2) mef (make edge face), kef (kill edge face) 
(3) mev (make edge vertex), kev (kill edge 

vertex) 
(4) mekr (make edge kill ring), kemr (kill edge 

make ring) 
(5) mekd (make edge kill disc), kemd (kill edge 

make disc) 
(6) mfkrh (make face ill ring hole), kfmrh (kill 

face make ring hole) 

(7) mvkdh (make vertex kill disc hole), kvmdh 
(kill vertex make disc hole) 

The names of the Euler operators are shown along 
with their inverse operations.  These fourteen 
operations are sufficient to create any solid model.   

Conventional Euler operators for manifold solid 
models can be considered to be subset of the new Euler 
operators, so operations on solid models using 
conventional Euler operators can be implemented using 
the new Euler operators without any change.   

The new Euler operators are built in pairs, 
according to the principle of duality.  All of the Euler 
operators have corresponding operators obtained by 
interchanging the words “face” and “vertex”, “ring” and 
“disc.”  The mvfs and kvfs operators are self-dual 
operators.  The duality relationships between the Euler 
operators are shown below.   

(1) mvfs, kvfs (self-duals) 
(2) mef, kef < -- > mev, kev 
(3) mekr, kemr < -- > mekd, kemd  
(4) mfkrh, kfmrh < -- > mvkdh, kvmdh 
 

 
Fig. 9 mvfs, kvfs 

 

 
Fig. 10 mef, kef  

 

 

Fig. 11 mev, kev 

 
Fig. 12 mekr, kemr 

 

 
Fig. 13 mekd, kemd 

 

 
Fig. 14 mfkrh, kfmrh 

 

 
Fig. 15 mvkdh, kvmdh 

 
Only one code for the functions for each of the 

pairs of Euler operators shown in the list is necessary.  
The action of each function changes according to the 
input arguments.  For instance, one of the functions 
should act as either operator mef or mev depending on 
whether the inputs are face traversal or vertex traversal 
quarter-edges.  WEs and HEs are insufficient for this 
purpose because they cannot distinguish whether they 

are to be used to specify face adjacency or vertex 
adjacency. 
4.2 Basic data structure modifications by Euler 

operators  
The principle of duality also holds inside of each of 

the new Euler operators implemented using 
quarter-edges and the symmetric data structure.  Since 
a pair of Euler operators are implemented using a single 
function, each individual modification operation has 
two interpretations.  This sections show the details of 
the actions of an implementation of each individual 
Euler operator.  The Euler operators which are 
implemented using a single procedure are shown in 
pairs.  The corresponding subprocedures in the pairs 
are given with the same number.  Some of these 
procedures may seem unfamiliar.  It is obvious from 
the principle of duality that every one of these 
operations is necessary to construct an arbitrary solid 
model.  The duality of the Euler operators guarantees 
that there are no missing subprocedures.  Complete 
Euler operators are obtained because of the principle of 
duality.   
(1) mvfs (make vertex face shell), kvfs (kill vertex 

face shell) 
(2) The Euler operator mvfs creates a new shell, face, 

vertex and a pair of quarter-edges.  The operator 
kvfs is the inverse operation.  Figure 9 shows the 
result of the operation.   

(3) mef (make edge face), kef (kill edge face) and mev 
(make edge vertex), kev (kill edge vertex) 

(4) The operator mef creates a new edge and face 
inside of a face that already exists (Fig. 10).  The 
operator kef is the inverse operation.  The 
operator mev creates a new edge and vertex in an 
old vertex (Fig. 11)  The operator kev is the 
inverse operation.  Our implementation of mef 
and mev each provides six different ways to create 
new elements.  The modifications in mef (kef) 
and mev (kev) are completely symmetric.   

(5) mekr (make edge kill ring), kemr (kill edge make 
ring) and mekd (make edge kill disc), kemd (kill 
edge make disc)  

(6) The Euler operator mekr deletes a ring by 
connecting two rings with an edge (Fig. 12).  Two 
separate rings of quarter-edges are obtained from 
the operation.  The operator kemr creates a new 
ring by removing an edge.  On the other hand, the 
Euler operator mekd deletes a disc by connecting 
two discs with an edge (Fig 13).  Two separate 
discs of quarter-edges are obtained from the 
operation.  The operator creates a new disc by 
removing an edge.   

(7) mfkrh (make face kill ring hole) , kfmrh (kill face 
make ring hole) and mvkdh (make vertex kill disc 
hole), kvmdh  The Euler operator mfkrh removes 
a penetrating hole from a shell by creating a new 
fae from a ring (Fig. 14).  The kfmrh operator is 
the inverse of mfkrh.  The operator mvkdh 
removes a penetrating hole from a shell by creating 
a new vertex from a disc (Fig. 15).  The kvmdh 
operator is the inverse operation. 
 

– 44 – – 45 – 



5 Applications  
5.1 Duality in primitive solid models  

Most solid modelers provide some primitive solid 
models which can be created by specifying a small 
number of parameters.  These primitive solids are 
modified and combined to obtain the intended model.  
Solid models created using the data structure and the 
Euler operators in the previous sections can be 
interpreted as two different solids.  Therefore, each 
function for crating primitive solid models can be used 
for a pair of two different solids as can be seen in Fig. 
16.  

Fig. 16 Dual Shapes created by shared source code  
 

5.2 Application to non-manifold solid models  
Many methods have been proposed for the 

boundary representations of non-manifold solid models.  
The conventional manifold solid models do not 
necessarily require complete symmetry between faces 
and vertices.  However, in a non-manifold modeler, the 
principle of duality can serve as a criteria for checking if 
the representation has sufficient capabilities.  Research 
concerning non-manifold representations is often based 
on an extension of the Winged-edge or half-edge 
structure.  The quarter-edge structure has the most 
powerful specification capabilities of any of the edge 
based data structures in that the quarter-edge can be 
used to distinguish between face adjacency and vertex 
adjacency.  

 
6 Conclusions  

The quarter-edge data structure has been proposed 
as a method of realizing the principle of duality in solid 
model representations.  A symmetrical data structure 
combined with quarter-edge is necessary to implement 
Euler operators which can be used for dual operations.  
The quarter-edge representation is powerful in that face 
adjacency and vertex adjacency can be distinguished.   

A simple solid modeling system with a set of dual 
Euler operators was implemented using this data 
structure.  The data structure and Euler operators were 
used in much the same fashion as conventional ones.  
Although a quantitative comparison cannot be presented, 
the new representation and Euler operators are more 
theoretically sound and is more suitable for extension to 
non-manifold solid models. 
 

References 
[1] M. Mantyla, “A Note on the Modeling Space of 

Euler Operators,” Computer Vision，Graphics and 
Image Processing, 26, (1984) 45.  

[2] F．Yamaguchi，M．Niizeki，”A New Paradigm for 
Geometric Processing,” Computer Graphics Forum，
Vol. 12, No. 3, Conference issue for 
EUROGRAPHICS ‘93, September 1993, pp. C-177 
– C-188.  

[3] K. Weiler, “Edge-Based Data Structures for Solid 
Modeling in Cured-Surface Environments,” IEEE 
CG&A, (1985), 21.  

[4] K ． Weiler ， ”Boundary Graph Operators for 
non-Manifold Geometric Modeling Topology 
Representations,” Geometric Modeling for CAD 
Applications, M. J. Wozny, H. W. McLaughlin, J.L. 
Encarnacao eds., IFIP, (1988) 37.   

[5] H. S. M. Coxeter, “Introduction to Geometry,” John 
Wiley and Sons，(1961). 

[6] T. C. Woo, J. D. Wolter，”A Constant Expected Time, 
Linear Storage Data Structure for Representing 
Three-Dimensional Objects，”IEEE Transactions on 
Systems, Man, and Cybernetics, Vol. SMC-14，No．
3，May/June 1984，pp. 510－515. 

 
 
Received on December 30, 2013 
Accepted on February 3, 2014 

 

The 3rd International Conference on Design Engineering and Science, ICDES 2014 
Pilsen, Czech Republic, September 1-3, 2014 

Copyright © 2014, The Organizing Committee of the ICDES 2014 

 
Compression of Simulation Results Database Using Tensor Decomposition 

 
Yixiang FENG*1 

*1 Hitachi Research Laboratory 
Hitachi, Ltd. 
832-2 Horiguchi, Hitachinaka, Ibaraki 312-0034, JAPAN 
yixiang.feng.cq@hitachi.com 

 
Abstract 

With the current trend of globalization, product design 
and development is often conducted collaboratively 
among several divisions, thus making it a huge 
challenge to transfer large CAE (Computer Aided 
Engineering) data between different locations. In this 
study, we have developed a data compression method 
based on TD (Tensor Decomposition). In this method, 
voxel simulation results data are represented as tensors 
and a tensor decomposition algorithm based on HOOI 
(Higher-Order Orthogonal Iteration) algorithm is 
applied to the tensors. After tensor decompression, the 
original tensor is decomposed into a core tensor and a 
series of basis matrices, whose summed size is 
considerably smaller than that of the original tensor. As 
a result, a compression ratio of over 60:1 is achieved for 
steady flow simulation results data and the error is 
below 5%. A compression ratio of over 70:1 is achieved 
for unsteady flow simulation results data and the error is 
below 5%. We have confirmed that at 5% error, no 
significant information is lost during the data 
compression process. 
Keywords: CAE, product design, simulation, tensor 
decomposition, data compression 
 

1 Introduction 
Nowadays, CAE has become an indispensible tool 

for industrial product design and development. One of 
the trends with recent CAE is that models have become 
increasingly large-scaled. This is partly due to the 
increase in the functionality and complexity of products. 
The advancement in HPC (High Performance 
Computing) has made it possible to run large-scaled 
calculations in reasonably short time, which results in 
very large CAE results database. Meanwhile, in 
distributed computational environments such as the 
cloud systems, it is often necessary to transfer CAE 
results to client PCs for post-processing and/or 
visualization [1]. Since product design and development 
requires a speedy processing of CAE results data, it is 
important to reduce the data transfer time. To achieve 
this, it is important to compress the size of CAE results 
data before data transfer. 

Besides the traditional mesh-based simulation, 
voxel –based simulation is often used to simulate actual 
industrial products due to the simplicity and robustness 
of grid generation [2], [3], [4]. In voxel simulations, the 
simulation models tend to be huge because of the fact 
that the voxel grids have to be divided at a high 
resolution to ensure precision [2]. Therefore, it is even 

more important to compress the voxel-based simulation 
results when transferring the database. 

Data compression has long been studied in 
data-intensive disciplines such as image/video 
processing, signal processing, bioinformatics, etc. 
However, there were only few studies in the 
compression of CAE results data. In one of the studies, 
EZT (Embedded Zero-Tree) wavelet encoding method 
has been used to compress BCM (Building-Cube 
Method)-based CFD results data [5]. In another study, 
SVD (Singular Value Decomposition) method has been 
applied to particle simulation data [6]. Recently, high 
order SVD has been used to compress CFD results of 
the outer flow around a wing with hexahedral mesh [7]. 

Tensor decomposition, or tensor factorization, is 
the expansion of SVD to higher-dimensional arrays. In 
tensor decomposition, the original tensor is decomposed 
into a core tensor and several basis matrices whose total 
number is equal to the dimension of the input tensor 
[8][9][10]. Figure 1 illustrates the image of tensor 
decomposition. 

 

Fig. 1 An illustration of tensor decomposition 
 
Tensor decomposition has been applied for image 

data compression [11], dimensionality reduction [12], 
and more recently for the compression of hexahedral 
mesh-based simulation result database [7]. However, to 
the best of our knowledge, there has been no application 
of tensor decomposition to the data compression of 
voxel-based simulation results.  

In this study, we propose a data compression 
method for voxel simulation results based on tensor 
decomposition. 

 
2 Tensor decomposition 

2.1 Data representation using tensors 
  Simulation results data tend to be high-dimensional 
due to the fact that they have various design parameters 
and contain multiple physical quantities. Traditional 

– 46 – – 47 – 

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, August 31 – September 3, 2014


