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Abstract

This paper describes a controller design for air-
conditioner considering of occupant's requests, especially,
a method to predict occupant's requests by using
Bayesian networks. To show our basic concept and
detailed procedure, the structure of Bayesian networks
for this application is described. Then, probability tables
which present the probabilistic distribution of occupant’s
requests at each temperature width are shown. After that,
using an example case, we describe detailed procedure of
our framework. How to predict occupant’s requests and
how to update probability tables are shown in detail.
Finally, we confirm our proposed method discussing our
experimental results.
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1 Introduction

This paper describes air-conditioning controller
design based on prediction of occupant’s requests using
Bayesian networks. Generally, air-conditioners control
air condition based on human thermal comfort level
which is defined using seven factors, such as air
temperature, relative humidity, air speed, radiant
temperature, metabolic rate, and clothing insulation.
Well-known thermal indices are the effective temperature
(ET), the wet-bulb globe temperature (WBGT), the
discomfort index (DI), the predicted mean vote (PMV),
the standard effective temperature (SET), and so on [1].
To control air condition, occupant’s requests are
predicted from the indices. However, since these indices
are all generalized indices based on the experiments
using numbers of subjects, they often provide wrong
predictions due to the differences among individuals.
Since our prediction is based on the probability tables
acquired from occupants' votes, our framework can
predicts occupant’s requests considering of the
differences. To show our basic concept and detailed
procedure, we describe the structure of Bayesian
networks for the prediction of occupant’s requests. Next,
the probability tables which present probabilistic
distribution of occupant’s requests at each temperature
width are shown. After that, using an example case, we
describe detailed procedure of our framework. How to
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predict occupant’s requests and how to update probability
tables are shown in detail. Finally, we confirm our
proposed method discussing our experimental results.

2 Bayesian network modeling

of occupant’s requests
A Bayesian network is a directed graphical model for
representing conditional independencies between a set of
random variables. It provides a tool for dealing with two

Table 1 Prior probability

Operation | Probability distribution T,
Up 0.33 | 0.030
Down 0.33 | 0.063

Keep 0.33 | 0.180
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Fig.1 Bayesian network model

D K
100%
0,
80% 0.180
0.063 A
0.030
10% 10%

22 26 30 22 26 30 22 26  30[°C]

Fig. 2 Probability distribution
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problems that occur through applied mathematics and
engineering [2]. In the Bayesian network, an arc from
node A to B can be informally interpreted as indicating
that A “causes” B [3]. The simplest statement of
conditional independence relationships encoded in a
Bayesian network can be stated as follows: a node is
independent of its ancestors given its parents, where the
ancestor/parent relationship is with respect to some fixed
topological ordering of the nodes. Therefore, for a
Bayesian network consisting of n nodes (1, 2, ... 2, ) ,
we have the representation for the joint probability
distribution

{1, 29, e ) :Hp{;r:1_|:1:pi) (1)
=1

where p(#;|xp;, is the local conditional probability
distribution associated with node 7 and P; is the set of
indices labeling the parents of node 4 (P; can be empty
if node 7 has no parents).

Figure 1 shows Bayesian network model of
occupant’s requests. In order to account for this model,
let us assume that an occupant operates the air
conditioner in some thermal environment. The occupant
can control the air conditioner pushing buttons on the
control panel. In this case, we assume that the occupant
can control just up and down preset temperature. Letters
'U', 'D' and 'K' in the figure indicate 'Up', 'Down' and
'Keep' respectively. T, T, T3 and T, show
temperature width in which the temperature acquired by
the sensor will be categorized. Bayesian networks
graphically represent the joint probability distribution of
a set of random variables. A Bayesian network is
composed of a qualitative portion (its structure) and a
quantitative portion (its conditional probabilities). The
arcs between nodes represent direct dependencies
between the variables. For instance, if the occupant
selects the up button, the probability that the temperature
in the thermal environment is categorized in 7} is
0.030 (Table 1). This value is calculated considering of
the probability distribution U in Fig.2. In this paper,
probability distributions are defined arbitrary. However,
this probability distributions should be made by
frequency of actual operation. If there is no data to make
the probability distributions, predicted percentage of
dissatisfied (PPD)[4] can be used for initializing the
distributions.
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Fig.3 Predicted percentage of dissatisfied

Table 2 ASHRAE thermal sensation scale

Value Sensation
+3 Hot
+2 Warm
+1 Slightly warm

0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold

3 Predicted percentage of dissatisfied (PPD)

Occupants with various clothing levels and performing
different activities are in thermal environments with
different temperatures, different humidities, and different
airflow velocities. The occupants express their thermal
comfort level which is often characterized using the
American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) thermal sensation
scale as shown in Table 2. The average thermal sensation
of a large number of occupants, using the ASHRAE
thermal sensation scale, is called the Predicted Mean Vote
(PMV). Figure 3 shows an empirical relationship
between the percentages of people dissatisfied (PPD)
with PMV defined as follows:

FID = 100 — 95 - exp(—0.03353 - PMV* — 0.2179 - PMV?)
2

PMYV is the predicted mean vote of a large population
of people exposed to a certain environment. PMV
represents the thermal comfort condition on a scale from
-3 to 3 shown in Table 2, derived from the physics of heat
transfer combined with an empirical fit to sensation. This
equation contains terms that relate to clothing insulation
I.; [m?’K/W], metabolic heat production A7 [W/m?],
external work W [W/m?], air temperature 7, [°C],
mean radiant temperature 7,.[°C], relative air speed v
[m/s] and vapor pressure of water vapor P[Pa].

PMV = {0.303 exp(—0.036 M) + 0.028} [(M - W)
—3.05 x 10735733 — 6.99(M — W) — P}
—0.42{(M — W) — 58.15}

—1.7 x 107 M (5867 — P} — 0.00140 (31 — T,,)
=3.96 < 107 fy {({To + 273)" = (Tore + 273)1)

—Juh(Ta = T.)]
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Jet is the ratio of clothed and nude surface areas given

by:

fou = 1.0+ 0.2,
fo = 1.05 4 0,114

(I,;;; < (J5)

(I > 0.5) “)

where T, is the clothing surface temperature given by

repeated calculation of:

T =357 — 0L028(M — W)

—0.1551 [3.96 x 1078 £ [(Toy + 273)

—(Tope + 2730 b + fush (T = T,) )
where h. is the heat transfer coefficient,
he = max{2.38(Ty — 1,)"*%, 121y} (6)

and 7,,,; is mean radiant temperature.

4 AC control by predicted request
To predict occupant’s request, conditional probabilities
P(UIT,), P(DIT,) and P{K|T,) are calculated as
follows:

PIT, |0 P(U)
P(T,)

P

(7

i -

where P(U), P(71)=0.030 due to the Table 1. The
dominator of the fraction is calculated as follows:

P(T) = P{TY|IHYP(I)y + P(TD)YP{D)Y + P{Th | K)P(K
= 0.030 x 0.33 + 0.063 » 0.33 + 0.180 x 0.33
= 0.08009

)

(®)

Therefore P{I7|T1) is calculated as 0.1099. In the same

way, P(D|T,) and P(K|T}) are calculated.
gy PD)PD)
PDITy) = 007 = 02308 (9
rmy . PGIK)PKY
PUK|T) = =g = 06503 (10)
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Table 3 Prior probability
Updated frequency(Probability)
12 (12/50=0.24)

Operation | Default frequency (Probability)

Up 10 (10/30=0.33)

Down 10 (10/30=0.33) 20 (20/50=0.40)

Keep 10 (10/30=0.33) | 18 (18/50=0.36)
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(a) Default distribution
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Fig. 4 Update frequency distribution

Sensation vote

Temperature-humidity
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Fig.5 Temperature-humidity sensor

As a result, following the maximum a posteriori
probability (MAP) estimation[5], if
PUT,) < P(DIT,) < P{K|T,), the occupant’s request
is predicted as 'Keep.' This request is used for controlling
the air conditioning.

S Update probability distribution

The probability distribution is provided as {Up, Down,
Keep}={0.33, 0.33, 0.33} which is defined arbitrary but
reasonably as mentioned before. This probability
distribution can be made by frequency of actual operation
and can be updated dynamically according to occupant’s
operation. Table 3 shows an example case of updating
the probability distribution. Default frequencies of Up,
Down and Keep request is 10, 10 and 10 respectively.
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6.1 Occupant’s sensation vote and PMV

We logged temperature-humidity data in the vicinity of . L
an occupant for a long term. The occupant used a mobile Fig. 8 Prediction results
terminal to vote their thermal sensation level at an
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Fig. 7 Sensation vote and PMV (Aug. 5)
arbitrary time during the term (Fig. 5). In Fig. 6, the upper figure shows temperature and humidity change for

—61—



7 days on August 4th through 10th. The lower graph
compares occupant’s sensation vote with PMVs derived
from the temperature and humidity. These data change
with the cycle of 1 day. Figure 7 shows the data on Aug.
Sth. This result shows not all sensation votes correspond
to PMVs. Even the large difference between vote and
PMV can be found. Some votes are -2 ('cool') although
PMVs indicate 1 (‘slightly warm') to 2 (‘warm'), for
instance. Thus the air-conditioning control based on such
index as PMV does not always function sufficiently.
Moreover, omitting air-conditioning at that thermal
situation are expected to avoid energy waste. For this
purpose, it is necessary to predict occupant’s sensation
correctly even though the difference between vote and
PMYV arises from individual difference.

6.2 Prediction of occupant’s request

Occupant’s request is predicted using Bayesian-
network-based method mentioned before. In this paper,
we assume that occupant’s request is directly linked to
occupant’s vote. 'Hot' and 'Cold' correspond to 'D" and 'U'
respectively. However, note that not all sensation votes
correspond to thermal indices like PMV.

Figure 8 shows the correlation between the
occupant’s request and prediction results during the term.
Figure 8(b) compares occupant’s actual requests with
PMV-based request predictions. Several predictions are
reasonable, however, they do not always correspond to
the actual occupant’s request. Correct answer rate is
43.4%. Figure 8(c) shows the prediction result by using
our proposed method mentioned before. In this case,
53.9% of predictions correspond to actual requests.
These predictions are derived from only temperature for
the sake of simplicity, but human-thermal sensation is
affected by other thermal values. Our proposed method
could be quite easily extended to multi-sensor use to
solve this problem. Figure 8(d) shows the prediction
result using two sensor values, temperature and humidity.
The result shows the best performance, 64.5%, of the
three.

6.3 Discussion

The main findings of experiments were as follows.
First, conventional thermal indices did not always
correspond to actual sensation votes. Because most
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thermal indices were built for some special static thermal
environment. Therefore, not all occupant’s votes are
predicted by using the indices. Second, our proposed
method could predict the occupant’s actual sensation vote
more precisely than PMV-based prediction using just one
sensor value, as probability distribution based on the
actual sensation votes was defined. Finally, two-sensor
predictions showed the best performance. Our proposed
method can easily be applied to multi-sensor system.

7 Conclusion

This paper proposed BN-based air-conditioning
controller design considering of occupants requests. To
show our basic concept and detailed procedure, the
structure of Bayesian networks for this application was
described. Then, probability tables which present the
probabilistic distribution of occupant’s requests at each
temperature width were shown. After that, using an
example case, we described detailed procedure of our
framework. How to predict occupant’s requests and how
to update probability tables were shown in detail. Finally,
we confirmed our proposed method discussing our
experimental results. Our method enables to predict how
an occupant wants to operate switches on the air-
conditioner control panel in certain thermal environment
using the Bayesian networks.
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