
The 3rd International Conference on Design Engineering and Science, ICDES 2014 
Pilsen, Czech Republic, September 1-3, 2014 

Copyright © 2014, The Organizing Committee of the ICDES 2014 

 
Thermal Deformation Prediction in Machine Tools by Using Transfer Functions 

 
Yu SETO*1, Fumihiro SUZUMURA*2 and Gonojo KATAYAMA*3 

*1   Graduate School of Science and Technology, Hiroshima Institute of Technology 
2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, JAPAN 
a310071@cc.it-hiroshima.ac.jp 

*2    Department of Mechanical Systems Engineering, Hiroshima Institute of Technology 
2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, JAPAN 
f.suzumura.br@it-hiroshima.ac.jp 

*3    Professor emeritus, Hiroshima Institute of Technology 
2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, JAPAN 
katayama@me.it-hiroshima.ac.jp 

 
Abstract 

The purpose of this paper is to estimate the thermal 
deformation of machine tools. The prediction method of 
thermal deformation is constructed from transfer 
functions between specified surface temperatures and 
the relative displacement in the cutting area. The 
relative displacement in the cutting area is predicted 
using some specified surface temperatures near the heat 
source in machine tools. The parameters of transfer 
functions are derived by the Steepest Gradient 
Algorithm. As a result, the prediction method can 
predict with enough certainty at what rate the 
temperature changes the most rapidly on a machine's 
startup transient behavior. The method proposed in this 
paper is remarkably effective to estimate thermal 
deformation and confirm that the error between 
experimental and estimated values will be remarkably 
reduced. Furthermore, the proposed method is applied 
to the vertical machining center in order to verify the 
effectiveness. 
Keywords: thermal deformation, prediction, machine 
tool, transfer function, vertical machining center 
 

1 Introduction 
Several kinds of machine tools such as high speed 

and high performance machine tools, combined 
multi-function machine tools, and ultra-precision 
processing machine tools are developed.  
Manufacturing by using the accuracy of the micrometer 
order has become possible. Increasingly, changes in the 
business requirements of manufacturing industries are 
driving machining systems to be more accurate and 
more productive. Many automated machining operating 
solutions are available for higher productivity and 
machine tools are evolving to have a higher accuracy. 
However, it is difficult to maintain accuracy when the 
machine tools and the precision instrument with very 
high accuracy are operated continuously. The factor that 
causes the decrease in the processing accuracy includes 
thermal deformation. Thermal deformation is one of the 
major error sources of cutting working pieces, which is 
due to the temperature variation and non-uniform 
distribution characteristic. It will cause a 40-70% error 
during the cutting process in the machine tools. 

Therefore, it is important because of the processing that 
improves machining accuracy by countermeasure for 
reducing thermal deformation or improving accuracy 
with error compensation. It is difficult to keep the 
machining accuracy under a complex operation of 
machine tools in the structural heat interception and the 
cooling of the heat source because thermal deformation 
greatly influences a rapid temperature. 

Several kinds of countermeasure for reducing 
thermal deformation have been surveyed and reviewed. 
The transfer functions between the ambient temperature 
variation and the thermal deformation of the machine 
tools, as well as a method of estimating the thermal 
deformation by utilizing the measured transfer functions 
have been proposed [1]. The basic characteristics of the 
thermal deformation have been obtained by the 
experiments and the relative thermal deformation has 
been estimated using the basic characteristics [2]. An 
estimation model utilizing transfer functions to identify 
thermal deformation of machine tools has been 
developed by utilizing available information in CNC 
units [3]. A thermal deformation control for aerostatic 
spindle systems has been proposed considering heat 
balance in an objective spindle bearing system [4]. An 
analytical method with a Laplace transformation has 
been developed for the inverse heat conduction problem 
[5]. Neural network models have been constructed to 
estimate thermal deformation by employing time-series 
data of the measured temperatures [6]. The thermal 
deformation prediction has been developed by using 
transfer functions in a machine tool model [7], [8]. 

The purpose of this paper is to estimate the thermal 
deformation of machine tools by using transfer 
functions.  The estimation model of the thermal 
deformation based on the frequency domain is 
constructed from the transfer functions between 
specified surface temperatures and the relative thermal 
displacement in the cutting area. The relative 
displacement in the cutting area is predicted using two 
specified surface temperatures near the heat source in 
the machine tool model. The parameters of the transfer 
function are derived by the Steepest Gradient Algorithm. 
Furthermore, in order to predict both surface roughness 
and accuracy of pieces of work manufactured by 
vertical machining center, the proposed method is 

applied and its effectiveness is verified. 
 

2 Prediction method 
The thermal deformation prediction method is 

derived by using the transfer function between the 
surface temperature variation of the structural parts and 
the relative thermal displacement in the cutting area. 
That is, the thermal displacement that originates from 
the thermal gradient of the structural parts is predicted 
by Eq. (1). 

 
(1) 

 
Where, )(sDi  is the thermal displacement of the 
cutting area due to the influence of surface temperature 
variation )(si , and )(sGi  is the transfer function 
between )(sDi  and )(si . The thermal deformation 
prediction method is derived by overlapping these. 

 
(2) 

 
The diagram for the thermal deformation prediction is 

shown in Fig. 1. The transfer function )(sGi  is 
defined,  
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where, iK  and ijT  ( ni ,,2,1  , )2,1j  are the 
parameters to be estimated. The transfer function )(sGi  
is described in the time domain by using a delta 
function. 
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where, )(t  is the Dirac delta function. The Dirac 
delta function is formally described as follows. 
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The estimated value of the relative thermal 
displacement by using the thermal deformation 
prediction method is obtained by  

 
 
 
 
 
 
 
 

Fig. 1 Diagram for the thermal deformation 
prediction 

 
 

(7) 
 
The integrated square prediction errors E  over the 
entire measurement time are obtained by using the 
estimated value )(td  and the relative thermal 
displacement )(td . 

 
(8) 

 
The parameters ( iK , 1iT , 2iT , ),,2,1 ni   are 
determined by using the Steepest Descent Algorithm 
(SDA) which minimizes the criterion E . 

The proposed method is applied to the machine 
tool model and vertical machining center in order to 
verify the effectiveness. 
 
3 Prediction results in the machine tool 

model 
It is considered that the relative displacement in the 

cutting area is able to be predicted by measurement of 
the surface temperature variation and the thermal 
gradient related to the thermal capacity of the material. 
The machine tool model is designed and manufactured 
based on the outcome of the experiment. 
3.1 The machine tool model 

The machine tool model is shown in Fig. 2. The 
structural parts of the machine tool model are made of 
FC300. The cutting area of the machine tool model is 
assumed to be both tips to be a cutting tool and a work. 
The heat source is located on the column parts of the 
assumed cutting tool side and constant heat source is 
generated and controlled by a temperature controller. 
The machine tool model deforms due to the influence of 
this heat source, and the relative thermal displacement 
in the cutting area changes. The relative thermal 
displacement is measured by using differential 
transformers. The surface temperatures at points A and 
B of the machine tool model shown in Fig. 2 are 
measured by using thermoelectric couples. It is thought 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Machine tool model 
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Abstract 

The purpose of this paper is to estimate the thermal 
deformation of machine tools. The prediction method of 
thermal deformation is constructed from transfer 
functions between specified surface temperatures and 
the relative displacement in the cutting area. The 
relative displacement in the cutting area is predicted 
using some specified surface temperatures near the heat 
source in machine tools. The parameters of transfer 
functions are derived by the Steepest Gradient 
Algorithm. As a result, the prediction method can 
predict with enough certainty at what rate the 
temperature changes the most rapidly on a machine's 
startup transient behavior. The method proposed in this 
paper is remarkably effective to estimate thermal 
deformation and confirm that the error between 
experimental and estimated values will be remarkably 
reduced. Furthermore, the proposed method is applied 
to the vertical machining center in order to verify the 
effectiveness. 
Keywords: thermal deformation, prediction, machine 
tool, transfer function, vertical machining center 
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multi-function machine tools, and ultra-precision 
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improves machining accuracy by countermeasure for 
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with error compensation. It is difficult to keep the 
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machine tools in the structural heat interception and the 
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greatly influences a rapid temperature. 

Several kinds of countermeasure for reducing 
thermal deformation have been surveyed and reviewed. 
The transfer functions between the ambient temperature 
variation and the thermal deformation of the machine 
tools, as well as a method of estimating the thermal 
deformation by utilizing the measured transfer functions 
have been proposed [1]. The basic characteristics of the 
thermal deformation have been obtained by the 
experiments and the relative thermal deformation has 
been estimated using the basic characteristics [2]. An 
estimation model utilizing transfer functions to identify 
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developed by utilizing available information in CNC 
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analytical method with a Laplace transformation has 
been developed for the inverse heat conduction problem 
[5]. Neural network models have been constructed to 
estimate thermal deformation by employing time-series 
data of the measured temperatures [6]. The thermal 
deformation prediction has been developed by using 
transfer functions in a machine tool model [7], [8]. 

The purpose of this paper is to estimate the thermal 
deformation of machine tools by using transfer 
functions.  The estimation model of the thermal 
deformation based on the frequency domain is 
constructed from the transfer functions between 
specified surface temperatures and the relative thermal 
displacement in the cutting area. The relative 
displacement in the cutting area is predicted using two 
specified surface temperatures near the heat source in 
the machine tool model. The parameters of the transfer 
function are derived by the Steepest Gradient Algorithm. 
Furthermore, in order to predict both surface roughness 
and accuracy of pieces of work manufactured by 
vertical machining center, the proposed method is 

applied and its effectiveness is verified. 
 

2 Prediction method 
The thermal deformation prediction method is 

derived by using the transfer function between the 
surface temperature variation of the structural parts and 
the relative thermal displacement in the cutting area. 
That is, the thermal displacement that originates from 
the thermal gradient of the structural parts is predicted 
by Eq. (1). 
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The estimated value of the relative thermal 
displacement by using the thermal deformation 
prediction method is obtained by  

 
 
 
 
 
 
 
 

Fig. 1 Diagram for the thermal deformation 
prediction 
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The integrated square prediction errors E  over the 
entire measurement time are obtained by using the 
estimated value )(td  and the relative thermal 
displacement )(td . 
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The parameters ( iK , 1iT , 2iT , ),,2,1 ni   are 
determined by using the Steepest Descent Algorithm 
(SDA) which minimizes the criterion E . 

The proposed method is applied to the machine 
tool model and vertical machining center in order to 
verify the effectiveness. 
 
3 Prediction results in the machine tool 

model 
It is considered that the relative displacement in the 

cutting area is able to be predicted by measurement of 
the surface temperature variation and the thermal 
gradient related to the thermal capacity of the material. 
The machine tool model is designed and manufactured 
based on the outcome of the experiment. 
3.1 The machine tool model 

The machine tool model is shown in Fig. 2. The 
structural parts of the machine tool model are made of 
FC300. The cutting area of the machine tool model is 
assumed to be both tips to be a cutting tool and a work. 
The heat source is located on the column parts of the 
assumed cutting tool side and constant heat source is 
generated and controlled by a temperature controller. 
The machine tool model deforms due to the influence of 
this heat source, and the relative thermal displacement 
in the cutting area changes. The relative thermal 
displacement is measured by using differential 
transformers. The surface temperatures at points A and 
B of the machine tool model shown in Fig. 2 are 
measured by using thermoelectric couples. It is thought 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Machine tool model 
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that the machining error is measured only in the 
horizontal direction. The relative thermal displacement 
assumes the approaching direction to be positive and the 
opposite direction to be negative. 
3.2 Experimental results 

An experimental result under the condition which 
is set at a heat source temperature of 20K and 
continuously operates on 18ks is shown in Fig. 3. The 
temperature variation of point A and B rapidly increases 
to about 9.5K and 6.2K respectively during operation 
from 0s to 12ks, and gradually increases afterwards. The 
relative thermal displacement rapidly increases to about 
2.2ks, and an almost constant value is kept from about 
13.2ks after gradual decrement. The maximum relative 
thermal displacement is 37.9m at 2.2ks. The relative 
thermal displacement decreases from 2.2ks while the 
temperature of point A and B continues to rise. The 
thermal deformation of the machine tool model is 
greatly related to the thermal gradient of the structural 
parts. Therefore, it is thought that relative thermal 
displacement can be predicted by measuring the surface 
temperature of two points with high thermal gradients. 
3.3 Prediction results 

The prediction model in the machine tool model is 
obtained by displacement and temperatures of point A 
and B shown in Fig. 4. The transfer functions )(sGA  
and )(sGB  are defined by 

 
(9) 
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where, iK  and ijT  ( ,, BAi   )2,1j  are the 
parameters to be estimated by minimizing the integrated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Experimental result 
 
 
 
 
 
Fig. 4 Prediction model in the machine tool model 

square prediction errors over the entire measured time. 
The predicted result is shown in Fig. 5. The estimated 
value of relative thermal displacement is 37.9m when 
the maximum relative displacement is about 2.16ks. At 
this time, the experimental value is 37.8m and error is 
0.1m. An excellent prediction result is obtained in 
spite of the rapid temperature rise because the maximum 
prediction error is -1.0m over the entire measured 
time. 

 
4 Prediction results in vertical MC 

The proposed method is to apply machine tools to 
verify effectiveness. Ordinarily, machine tools 
compensate for thermal deformation and measuring the 
cutting area of machine tools during processing is 
difficult. However, in order to achieve ultra-precision 
machining technology, it is important to establish a 
method for minimizing thermal deformation. 
4.1 Experimental results in Vertical MC 

Ordinary, the vertical machining center 
compensates for the thermal displacement associated 
with the spindle running of the machining center. 
However, it is thought that the influence that occurs in 
the surface roughness of a piece of work made by the 
thermal deformation is an object of thermal deformation 
prediction. First of all, the grooving of some plate 
materials is formed by using a representative vertical 
machining center (Okuma, MB-56VA/B). SS400, which 
has a square 500mm on the side and a thickness of 
10mm, is used as the plate material. A spiral grooving 
shown in Fig.6 is formed on the plate materials by using 
the vertical machining center. The groove depth is 
0.5mm. The spindle of the machining tool uses 
superfine cemented carbide as a base metal and is 
coated with a titanium aluminum nitride compound. The 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Prediction result in the machine tool model 
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Fig. 6 Spiral grooving 
 

Table 1 Processing conditions 
Spindle diameter 3 mm 
Spindle speed 7000 r/min 
Forward speed 210 mm/min 

 
processing conditions are shown in Table 1. 

The surface temperature of the machining center 
follows the internal temperature and the ambient 
temperature, but the surface temperature variation is 
slightly smaller than that of the ambience because of the 
compensated thermal deformation. Therefore, the 
surface temperature of the spindle motor exposed for 
natural air cooling was measured during processing. The 
processing time was 225min. The surface temperature 
of spindle motor is shown in Fig. 7. The relative surface 
temperature to ambience of the spindle motor increases 
exponentially to 20K during processing. Immediately 
after processing, the surface temperature decreases to 
2.5K because of natural air cooling. The surface 
roughness of the processed material is measured by a 
stylus type surface roughness measuring instrument 
(Tokyo Seimitsu, SURFCOM FLEX 130A). The surface 
roughness is shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Measurement temperature 

The surface roughness variation decreases exponentially 
and the maximum range is 1.3m, which is caused by 
spindle durability. 
4.2 Prediction results in Vertical MC 

The prediction model in the vertical machining 
center which is obtained by the surface roughness and 
the surface temperature of the spindle motor is shown in 
Fig. 9 and the prediction result is shown in Fig. 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Surface roughness Ra (Average  1.96) 
 
 
 
 
 

Fig. 9 Prediction model in the vertical MC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Prediction result in the vertical MC 
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that the machining error is measured only in the 
horizontal direction. The relative thermal displacement 
assumes the approaching direction to be positive and the 
opposite direction to be negative. 
3.2 Experimental results 

An experimental result under the condition which 
is set at a heat source temperature of 20K and 
continuously operates on 18ks is shown in Fig. 3. The 
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thermal displacement decreases from 2.2ks while the 
temperature of point A and B continues to rise. The 
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parts. Therefore, it is thought that relative thermal 
displacement can be predicted by measuring the surface 
temperature of two points with high thermal gradients. 
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Fig. 6 Spiral grooving 
 

Table 1 Processing conditions 
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slightly smaller than that of the ambience because of the 
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surface temperature of the spindle motor exposed for 
natural air cooling was measured during processing. The 
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temperature to ambience of the spindle motor increases 
exponentially to 20K during processing. Immediately 
after processing, the surface temperature decreases to 
2.5K because of natural air cooling. The surface 
roughness of the processed material is measured by a 
stylus type surface roughness measuring instrument 
(Tokyo Seimitsu, SURFCOM FLEX 130A). The surface 
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and the maximum range is 1.3m, which is caused by 
spindle durability. 
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The mean squared prediction error of the surface 
roughness is 0.03m and the prediction error range is 
 0.07m over the entire measured time. 
 

5 Conclusions 
In this paper, the machine tool model is designed 

and manufactured, and the thermal deformation 
prediction in the machine tools is proposed by using 
transfer functions. Furthermore, the proposed method is 
applied to the vertical machining center and its 
effectiveness is verified. As a result, the following 
conclusions can be drawn. 
(1) The thermal deformation prediction proposed by 

using transfer functions is effective, and it is 
confirmed that the proposed method only has 
enough surface thermal gradients. 

(2) In the machine tool model, the maximum error of 
the relative thermal displacement is 0.1m; 
therefore, an excellent prediction result can be 
obtained. 

(3) The sum of the measurement error of differential 
transformers and thermoelectric couples is 2.5m. 
The errors for each experimental condition have 
been within this range.  

(4) In the vertical machining center, the surface 
roughness of the processed material is measured 
and its prediction result can be obtained from the 
surface temperature of the spindle motor. The 
prediction error range in vertical machining is 
0.07m over the entire measured time. 

(5) Because some temperature measurement points 
can be used anywhere, thermal deformation of the 
machine tools can be estimated without depending 
on the structure. 
In further work, the proposed thermal deformation 

prediction will be applied to multi-functional combined 
CNC machine and ultra-precision processing machine 
tools. 
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Abstract 
Reuse parts are parts removed from scrap automobiles 
that can be still used. In general, reuse parts reduce not 
only the cost for replacement of failed parts but also the 
environmental load. This study quantitatively evaluates 
environmental loads, such as the amount of CO2 
emission during the production of brand new parts, in 
order to quantify the beneficial effect of the reuse parts. 
The amount of CO2 emission can be calculated from the 
power consumption and operating time of each tool and 
machine employed. Reuse parts generate 0.62 kg of CO2 
per automobile when produced, which corresponds to 
1,212 kg per year. However, the amount of CO2 emitted 
from scrapping automobiles without producing new 
replacement parts is 3,063 kg per year. Therefore, the 
production of replacement parts emits three times less 
CO2 than scrapping.  
Keywords: environmental load, automobile, reuse parts, 
disassembly 
 

1 Introduction 
Reuse of old car parts has gained much attention 

recently. When scrapping old automobiles, many parts 
are still functioning and can be recovered for reuse. 
These parts are called reuse parts. In general, reuse parts 
not only considerably reduce the costs but can also 
reduce the negative effects on the environment. 
However, the quantification of these effects has not 
been assessed yet. This study focused on the 
determination of the amount of CO2, which is one of the 
greenhouse gases causing global warming. We 
calculated the amount of CO2 emission generated during 
the life cycle from the procurement of the materials for 
producing automobile parts to the manufacture of 
automobiles and scrapping. This study aimed to 
calculate the amount of CO2 emission from the reuse 
parts during their production, which is the first step to 

quantify their impact. 
 

2 Life cycle assessment 
Life cycle assessment (LCA) [1, 2] is a method for 

assessing environmental effects in parallel with the 
calculation of the consumption of the entire life cycle 
resources and emission matters, such as CO2 and 
sulfoxides (SOx). Figure 1 shows the procedure of LCA. 
First, we have to establish the research purpose clearly, 
then perform life cycle inventory assessment (LCI), and 
finally, life cycle impact assessment (LCIA). Based on 
the results, the extent to which the assessment targets 
are affecting the environment can be determined. LCI is 
the process of creating an inventory data that clarifies 
how many inputs and outputs were present in each 
process in the entire life cycle of the assessment object. 
LCIA, based on the inventory data created in the LCI, 
evaluates the environmental impact by analyzing and 
assessing the amount of substances, such as CO2, listed 
in the inventory data, which contribute to each 
environmental concern (e.g., global warming and ozone 
depletion). If the LCI results match to the purpose of the 
study, the LCA can be stopped at the level of the LCI. 
Therefore, we ended the LCA at the LCI stage because 
the purpose of this study was to quantify the amount of 
CO2 reduction when using reuse parts. 
 

3 Observation result 
To understand the production process of reuse parts, 

we visited the factory of Marutoshi Aoki Corporation, 
which scraps automobiles, produces reuse parts, and is a 
reuse parts dealer. We recorded the working process for 
the disassembly of automobiles on a video camera and 
counted the working hours. From this information, we 
extracted the amount of CO2 emission of each working 
process. 

Figure 2 shows the flow of the scrapping process 
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