
 

6.1 The zero thermal error prediction model of 
grating measuring system 

The X direction location relation between the zero 
points on the X axis grating measuring system before 
and after thermal deformation was expressed as 
following equation.  

  
TLLL  010111               (3) 

Here means thermal expansion coefficient of grating 
ruler. 

T means difference value between temperature of 
0T and 1T . 

The prediction model of zero thermal drift 
error eroz in X direction of the X axis grating 
measuring system could be expressed as following 
equation.   

    TLzero  01                  (4) 

The above results show that there exists the zero 
thermal drift error in the measurement direction of the 
grating measuring system due to the change of 
environmental temperature. The effect of error must be 
considered in the subsequent building process of 
comprehensive error correction model of CNC.  
6.2 The indication thermal error prediction model 

of grating measuring system 
(a) The relation between the coordinates of any point 
in the X direction within the range of [0, 01L ] which 
was measured by the X axis grating measuring system 
before and after the thermal deformation could be 
expressed as following equation.  

   TLLLLLL XLXLXTL  ）（ 010111 )( 
 

(5) 

So the formula of indication error 1  in [0, 01L ] of 
the grating measuring system could be expressed as:  

  TLLLLLL XLXLXLT  ）（ 0101111   (6) 

Here XLL   [0, 01L ], XLTL   [0, 11L ].  
(b) The relation between the coordinates of any point 
in the X direction within the range of [ 01L , 02L ] which 
was measured by the X axis grating measuring system 
before and after the thermal deformation could be 
expressed as following equation. 

 TLLLLLL XRXRXRT  ）（ 010111 )(   (7) 

So the formula of indication error 2  in 
[ 01L , 0L ] of the grating measuring system could be 
expressed as: 

 TLLLLLL XRXRXRT  ）（ 0101112   (8) 

Here  001 LLLXR ， ,  111 LLLXRT ， . 
Shown from the equations (6) and (8), the 

indication error calculation equations of the X axis 
grating measuring system within the range of [0, 01L ] 
and [ 01L , 0L ] are different. The difference caused by 
the thermal deformation of the grating measurement 
system has not been considered in the indication error 
prediction model building process before.  

7 Conclusions 
(a) The simulation analysis result of thermal 
deformation of CNC grating measuring system under 
traditional fixed mode shows that the zero error and 
indication error of grating measuring system would be 
affected by the thermal deformation of CNC bed in the 
traditional fixed way. And the additional influence 
could not be reduced or eliminated.  
(b)  The thermal deformation critical point in X, Y 
and Z directions of CNC bed is defined in this paper 
based on the body thermal deformation theory. The 
critical point determining method based on ANSYS 
Workbench is simple. The determined critical point on 
the CNC bed could be used as a new fixed point of the 
grating measuring system and a new fixed method of 
the grating measuring system is put forward based on 
the critical point, which can reduce or even eliminate 
the additional influence of CNC machine bed thermal 
deformation to the grating measuring system 
deformation . 
(c) The new zero and indication thermal error 
prediction model of the grating measurement system 
under new fixed way are built, which can be used to 
build a subsequent comprehensive error compensation 
model of CNC machine tool and to realize the high 
precision error compensation. 
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Abstract 

The parts of crossed helical gears have no difference as 
those of helical gears with parallel axes, because 
crossed helical gear is able to be manufactured in the 
same way as single helical gear, using the same cutting 
tool.  Because there is no difference between a crossed 
helical gear and a helical gear, that is, several 
advantages of mounting the gear in a gear box exist.  
The close accuracy in center distance, shaft angle and 
axial position does not affect the conjugate action of 
crossed helical gears.  As mentioned above, crossed 
helical gears have several advantages [1], [2] of the 
application.   However, crossed helical gears have also 
disadvantages. One is that contact stress between the 
tooth surfaces of crossed helical gears becomes 
comparatively high.  Another is that sliding velocity on 
tooth surfaces becomes higher than for other kinds of 
gears [3].  The purpose of this paper is exactly to 
investigate the contact stress state on the tooth surfaces 
of crossed helical gears. 
Keywords: machine element, gears, crossed helical 
gears, contact stress, contact ellipse 
 

1 Introduction 

 

Fig. 1 Contacting state on imaginary rack 
 

Figure 1 shows the contacting state on imaginary 
rack of 3 kinds of gearing, respectively spur, helical and 
crossed helical. In the case of spur gearing, contact 
between tooth, theoretically takes place at a line or two 
lines. The contact line becomes a rectangle due to 
deformation under loading. In the case of helical 
gearing, contact between tooth surfaces occurs along a 
diagonal line or becomes parallelogram. In the case of 
crossed helical gearing, the contact between teeth has 
only point contact instead of contact across a face width 
and contact point becomes an ellipse due to elastic 
deformation under loading. 

Figure 2 shows view of crossed helical gears. 
Crossed helical gears are used to transmit motion and 
power. Shafts in crossed helical gears are nonparallel. 
Crossed helical gears have several advantages. One is 
that are able to be manufactured by any machine, 
especially the hobbing machine.  Another is that slight 
changes in shaft angle and center distance do not affect 
the conjugate action.  In spite of these, crossed helical 
gears have not only advantages but also have 
disadvantages.  One is that the contact stress on tooth 
surface is relatively high, because the contact of gear 
teeth geometrically takes place at a point.  Another is 
that the relative slide between the tooth surfaces is 
notably large.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 View of crossed helical gears 
 

 

 

 

– 32 – – 33 – 

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, August 31 – September 3, 2014



 

 

In a crossed helical gear pair, Fig. 3 shows the 
relationship between two base cylinders of gears and a 
line of action. Gear 1 is the driver gear. Gear 2 is the 
follower gear. In Fig. 3 C is the contact point. This 
contact point C is moving on the line of action QH. QH 
means the common internal tangent to the two base 
cylinders. In this figure the shaft angle δ is the angle 
between the two axes of base cylinders. ρ1 and ρ2 are 
radii of curvature of tooth surfaces respectively. Line 
AA is the contact line between the imaginary rack and 
the tooth surface of gear 1. Line BB is the contact line 
between the imaginary rack and the tooth surface of 
gear 2. The total length of action line QH is constant. 
QH was represented as “w” by equation (1). 

2

22

1

11

2211

cos
tan

cos
tan

sin
coscos

b

tb

b

tb

n

tbtb

rr

rraw



















            (1) 

a[mm]: Center distance 
rb1[mm]: Radius of base cylinder of gear 1 
rb2[mm]: Radius of base cylinder of gear 2 
αn [deg]: Normal pressure angle 
αt1 [deg]: Transverse pressure angle 
αt2[deg]: Radius of base cylinder of gear 2 
βb1[deg]: Helix angle on base cylinder of gear 1 
βb2[deg]: Helix angle on base cylinder of gear 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 3 Relationship between two base cylinders and an 

action line 
 
At pitch point ρ1 and ρ2 are represented by 

equations (2) and (3), respectively. 
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rw1[mm]: Radius of pitch cylinder of gear 1 
r w2[mm]: Radius of pitch cylinder of gear 2 
dw1 [mm]: Diameter of working pitch cylinder of gear 1 
d w2 [mm]: Diameter of working pitch cylinder of gear 2 

 
The radii of equivalent cylinders are represented as 

the following equations (4), (5), (6) and (7). 
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ra1[mm]: Radius of tip cylinder of gear 1 
ra2 [mm]: Radius of tip cylinder of gear 2 
 

Figure 4 shows the engagement of the imaginary 
rack inserted between the tooth surfaces of gears 1 and 2.   
In Fig. 4 line AA is the contact line between the 
imaginary rack and the tooth surface of gear 1. Line BB 
is the contact line between the imaginary rack and the 
tooth surface of gear 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Engagement of crossed helical gear 
 

Engagement of tooth surfaces of crossed helical 
gears can be replaced by the contact of two equivalent 
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 (4) 

 (5) 

 (6) 

 (7) 

 

 

 

 

 

 

 

 

 

cylinders with the shaft angle φ as shown in Fig. 5.  
Equivalent cylinder 1 and 2 are geometrically 
contacting at point C.  According to loading, this 
contacting point C changes to a contact ellipse due to 
elastic deformation of tooth surfaces. When two 
cylinders of same diameter d with skew axes are 
pressed together with a normal pressure PN, a contact 
ellipse is obtained. Figure 6 shows the contact ellipse 
on the imaginary rack of crossed helical gears [7], [8].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ρ1 and ρ2 

 
Fig. 5 Two equivalent cylinders of crossed helical 

gears 
 
The shaft angle φ between two equivalent cylinders 

is represented [3] by equations (8) and (9). 
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1B [deg]：Angle between contact line AA and tooth 

trace 
2B [deg]：Angle between contact line BB and tooth 

trace 
δ[deg]: Shaft angle of crossed helical gear 
    

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Contact ellipse on imaginary rack of crossed 
helical gears 

 

In the general case [4], [5], [6], the maximum 
contact stress PHmax is represented by using Hertzian 
auxiliary. 
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a [mm]: A half of major axis of an ellipse 
b[mm]: A half of minor axis of an ellipse 
 

Two auxiliary coefficients ξ and η are derived by 
the following equations (11) and (12). 
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ν [-]: Poisson’s ratio  
E[MPa]: Young’s modulus  
 

ξ and η are represented by using complete elliptic 
integral of second kind E(k) as following equations (13) 
and (14). 
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In the general case, the following equation (15) is 
geometrically formed [4], [5].  
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11 , 12  [mm]: Principal radii of curvature at the point 

of contact for the body 1 
21 , 22  [mm]: Principal radii of curvature at the 

point of contact for the body 2 
 
   Furthermore, the radii of curvatures ( 12  and 22 ) 
along the generating lined become infinity. As showing 
in Fig. 5, the above-mentioned is equivalent to the 
contact two cylinders with skew axes. 

In the case of crossed helical gears, the following 
equation (16) was represented by one of the present 
authors [9], [10], [11].   
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In a crossed helical gear pair, Fig. 3 shows the 
relationship between two base cylinders of gears and a 
line of action. Gear 1 is the driver gear. Gear 2 is the 
follower gear. In Fig. 3 C is the contact point. This 
contact point C is moving on the line of action QH. QH 
means the common internal tangent to the two base 
cylinders. In this figure the shaft angle δ is the angle 
between the two axes of base cylinders. ρ1 and ρ2 are 
radii of curvature of tooth surfaces respectively. Line 
AA is the contact line between the imaginary rack and 
the tooth surface of gear 1. Line BB is the contact line 
between the imaginary rack and the tooth surface of 
gear 2. The total length of action line QH is constant. 
QH was represented as “w” by equation (1). 
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Fig. 3 Relationship between two base cylinders and an 

action line 
 
At pitch point ρ1 and ρ2 are represented by 

equations (2) and (3), respectively. 
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rw1[mm]: Radius of pitch cylinder of gear 1 
r w2[mm]: Radius of pitch cylinder of gear 2 
dw1 [mm]: Diameter of working pitch cylinder of gear 1 
d w2 [mm]: Diameter of working pitch cylinder of gear 2 

 
The radii of equivalent cylinders are represented as 

the following equations (4), (5), (6) and (7). 
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Figure 4 shows the engagement of the imaginary 
rack inserted between the tooth surfaces of gears 1 and 2.   
In Fig. 4 line AA is the contact line between the 
imaginary rack and the tooth surface of gear 1. Line BB 
is the contact line between the imaginary rack and the 
tooth surface of gear 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Engagement of crossed helical gear 
 

Engagement of tooth surfaces of crossed helical 
gears can be replaced by the contact of two equivalent 
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cylinders with the shaft angle φ as shown in Fig. 5.  
Equivalent cylinder 1 and 2 are geometrically 
contacting at point C.  According to loading, this 
contacting point C changes to a contact ellipse due to 
elastic deformation of tooth surfaces. When two 
cylinders of same diameter d with skew axes are 
pressed together with a normal pressure PN, a contact 
ellipse is obtained. Figure 6 shows the contact ellipse 
on the imaginary rack of crossed helical gears [7], [8].  
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Fig. 5 Two equivalent cylinders of crossed helical 

gears 
 
The shaft angle φ between two equivalent cylinders 

is represented [3] by equations (8) and (9). 
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Fig. 6 Contact ellipse on imaginary rack of crossed 
helical gears 

 

In the general case [4], [5], [6], the maximum 
contact stress PHmax is represented by using Hertzian 
auxiliary. 
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integral of second kind E(k) as following equations (13) 
and (14). 

 

 
2

3

1
2

k
kE





  

      32
32

2
2

323 1
1

21 


 


 k
k
kEk  

 
k [-]:Eccentricity of an ellipse  
 

In the general case, the following equation (15) is 
geometrically formed [4], [5].  
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   Furthermore, the radii of curvatures ( 12  and 22 ) 
along the generating lined become infinity. As showing 
in Fig. 5, the above-mentioned is equivalent to the 
contact two cylinders with skew axes. 

In the case of crossed helical gears, the following 
equation (16) was represented by one of the present 
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The variable F in equation (16) is the ratio of radius 
of equivalent cylinders. F equals to ρ1 divided by ρ2. 
   The value of angle φ is independent on the 
displacement of contact point. However the value of 
angle φ’ is dependent on the displacement of contact 
point. 
  

2 Experiment 
 

Figure 7 shows the experimental apparatus. This 
simplified experimental test was carried out to prove 
equation (16). The prescale film was used to measure 
pressure. The prescale film was inserted between the 
upper cylinder and the lower one in the Fig. 7. Two 
cylinders were made from the same materials. Acrylic 
resin was used as test material. Poisson’s ratio ν equals 
0.385.Young’s modulus E equals 4.49103 [MPa]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Experimental apparatus for two cylinders 
 
 

Fig. 8 Measured contact ellipses 
 
 
 
 
 
 

Table 1 Inclination angle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Test experimental apparatus was loaded by oil 

pressure. These experiments were carried out by 
pressing an upper cylinder upon a lower cylinder. Upper 
cylinder and lower cylinder have same diameter. They 
equal to 67.5[mm]. We measured the inclination angle 
of the ellipse by protractor. 

Measured contact ellipses between two cylinders 
by changing shaft angle φ in the case of PN = 1472[N] 
are shown in Fig. 8. Table 1 shows the experimental 
and calculated values of inclination angle. The 
experimental values were determined by reading the 
patterns of ellipse in Fig. 8.  The calculated values 
were resulted by using equation (16).  As shown in 
Table 1, experimental results are in good agreement 
with theoretical calculation. 
 

3 Contact stress state on the tooth surface  
    Figures 9, 10, 11 and 12 show the progress of 
engagement on imaginary rack about crossed helical 
gear.  A pair of crossed helical gears has a shaft angle δ 
of 90[˚] and a center distance a of 80.61[mm].   The 
driver and follower gears are identical. These figures 
show in the case of normal module mn = 3.0 and tooth 
number z = 19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9 Contact stress state on tooth 
αn=10[deg]，mn=3.0 

 
 
 
 

φ[deg] φ’[deg] 
(calc.) 

φ’[deg] 
(exp.) 

15 7.5 6.5 

30 15.0 17.0 

45 22.5 22.0 

60 30.0 33.0 

75 37.5 38.0 

90 45.0 45.0 
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Fig. 10 Contact stress state on tooth 
αn=14.5[deg]，mn=3.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Contact stress state on tooth 
αn=20[deg]，mn=3.0 

 

 
 Fig. 12 Contact stress state on tooth 

αn=25[deg]，mn=3.0 
 
 
 

Concerning driver gear, the direction of progress is 
from extreme right to extreme left. A center ellipse in 
these figures was calculated at pitch point. According to 
the progress of engagement, contact ellipse on tooth 
surface rotates clockwise. 
 

 
4 Conclusions 

The following conclusions were drawn from the 
contacting state on imaginary rack. 
(1) The inclination of contact ellipse from the result of 
the simplified experiment is good agreement with one 
obtained from theoretical calculation. 
(2) Details of variations of the contact ellipse on tooth 
surface of crossed helical gears were observed. 
According to the progress of engagement, contact 
ellipse on tooth surface rotates clockwise.    
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The variable F in equation (16) is the ratio of radius 
of equivalent cylinders. F equals to ρ1 divided by ρ2. 
   The value of angle φ is independent on the 
displacement of contact point. However the value of 
angle φ’ is dependent on the displacement of contact 
point. 
  

2 Experiment 
 

Figure 7 shows the experimental apparatus. This 
simplified experimental test was carried out to prove 
equation (16). The prescale film was used to measure 
pressure. The prescale film was inserted between the 
upper cylinder and the lower one in the Fig. 7. Two 
cylinders were made from the same materials. Acrylic 
resin was used as test material. Poisson’s ratio ν equals 
0.385.Young’s modulus E equals 4.49103 [MPa]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Experimental apparatus for two cylinders 
 
 

Fig. 8 Measured contact ellipses 
 
 
 
 
 
 

Table 1 Inclination angle 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Test experimental apparatus was loaded by oil 

pressure. These experiments were carried out by 
pressing an upper cylinder upon a lower cylinder. Upper 
cylinder and lower cylinder have same diameter. They 
equal to 67.5[mm]. We measured the inclination angle 
of the ellipse by protractor. 

Measured contact ellipses between two cylinders 
by changing shaft angle φ in the case of PN = 1472[N] 
are shown in Fig. 8. Table 1 shows the experimental 
and calculated values of inclination angle. The 
experimental values were determined by reading the 
patterns of ellipse in Fig. 8.  The calculated values 
were resulted by using equation (16).  As shown in 
Table 1, experimental results are in good agreement 
with theoretical calculation. 
 

3 Contact stress state on the tooth surface  
    Figures 9, 10, 11 and 12 show the progress of 
engagement on imaginary rack about crossed helical 
gear.  A pair of crossed helical gears has a shaft angle δ 
of 90[˚] and a center distance a of 80.61[mm].   The 
driver and follower gears are identical. These figures 
show in the case of normal module mn = 3.0 and tooth 
number z = 19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9 Contact stress state on tooth 
αn=10[deg]，mn=3.0 

 
 
 
 

φ[deg] φ’[deg] 
(calc.) 

φ’[deg] 
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15 7.5 6.5 

30 15.0 17.0 

45 22.5 22.0 

60 30.0 33.0 

75 37.5 38.0 

90 45.0 45.0 
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Fig. 10 Contact stress state on tooth 
αn=14.5[deg]，mn=3.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Contact stress state on tooth 
αn=20[deg]，mn=3.0 

 

 
 Fig. 12 Contact stress state on tooth 

αn=25[deg]，mn=3.0 
 
 
 

Concerning driver gear, the direction of progress is 
from extreme right to extreme left. A center ellipse in 
these figures was calculated at pitch point. According to 
the progress of engagement, contact ellipse on tooth 
surface rotates clockwise. 
 

 
4 Conclusions 

The following conclusions were drawn from the 
contacting state on imaginary rack. 
(1) The inclination of contact ellipse from the result of 
the simplified experiment is good agreement with one 
obtained from theoretical calculation. 
(2) Details of variations of the contact ellipse on tooth 
surface of crossed helical gears were observed. 
According to the progress of engagement, contact 
ellipse on tooth surface rotates clockwise.    
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