
• change of compliance responses under operational 
condition 

• imbalance excitation. 
 
process behavior 
• material behavior depending on cutting speed 
• notable process damping in cases of k > 5.  
4 Stability analysis by FE simulation with 

integrated cutting process 
 Apart from the listed difficulties a further 
development has been initiated to directly allow the 
comparison of alternative conceptual variants regarding 
the process stability during the design process. For this 
purpose analytical process models for turning and 
milling have been implemented for use in the FEA 
software packages ANSYS and PERMAS during the 
BMBF project “VispaB”.  

Extensive cutting tests have been realized to attain 
sufficient information on cutting force coefficients and 
suitable stability criteria. The following parameters are 
necessary to describe stationary cutting conditions for 
e.g. groove milling and to carry out an integated cutting 
process stability calculation [6]: 
• tool geometry: number of teeth, tooth pitch angle 
• workpiece material 
• cutting force model (linear or exponential) 
• stability criteria 
• cutting depth, tooth feed, spindle speed (constant 

speed or sinusoidal speed variation)  
• number of analysed tool rotations.  

 
Figure 6 shows the applied method for a H5000 

type horizontal machining centre of Gebr. Heller 
Maschinenfabrik GmbH, Nürtingen.  

To gain all data for a complete stability chart of a 
reference milling process different loops with basically 
transient sub-simulations have to be conducted: 
•  increasing tool rotation 
•  different cutting depth 
•  different spindle speed. 

 

   
  

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

Fig. 6 FE simulation of Heller H5000 with integrated 
cutting process for the prediction of stability 
charts 

Figure 7 shows a stability chart gained from FE 
simulation with integrated cutting process using the 
time-dependent chip-thickness modulation (Fig. 2 left) 
determined by spatial movement of tool centre and 
workpiece as a stability criteria.  

 
 
 

 
 
 
 
 
 

Fig. 7 Stability chart gained from FE simulation with 
integrated cutting process 

 
This method has entered the development process chain 
of a few german machine tool manufacturers to evaluate 
machine designs with respect to process stability and to 
compare alternative conceptual variants in achievable 
cutting depth before manufacturing any part of a new 
machine. Actual experiences are rare but will be 
expected after ongoing product design processes are 
concluded.    

 
5 Conclusions 

However, in summary the evaluation of process 
stability during the development process of machine 
tools is of high importance for fast introduction of new 
products into the market and for less design expenses. 
Furthermore it supplies novel opportunities to reach the 
machine tool users expectations in higher productivity. 
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Abstract 
With the recent acceleration in research into 
cryptography, we consider this a suitable moment to 
compare different cryptosystems. In this paper, a survey 
on cryptographic standards and algorithms is presented. 
First, the concept of cryptography is explained as well 
as its most common practical problems. Second, 
classification of cryptographic algorithms according to 
key management scheme is provided. A literature 
review of the most famous protocols together with some 
tables of comparison is presented. The main goal of this 
survey is to answer the question “What are the 
differences between these cryptographic schemes from a 
practical viewpoint?” The aim of this paper is to 
identify the distinguishing features of each. In doing so, 
we highlight the important questions to be asked when 
weighing up the benefits and drawbacks of each 
scheme. 
Keywords: cryptographic protocols, symmetric key 
cryptosystem, public key cryptosystem, stream ciphers; 
block ciphers, identity-based cryptosystems ID-PKC, 
certificateless public-key cryptosystem CL-PKC 
 

1 Introduction 
Secure communication in a strongly interconnected 

world has become an impelling need. With the advent in 
communication technologies and the Internet, new 
challenges and applications in the field of security have 
emerged.  

Cryptography is the art of keeping messages secure. 
In addition to providing confidentiality, cryptography is 
often asked to do other jobs such as authentication, 
integrity and non-repudiation.  Authentication means 
that it should be possible for the receiver of a message 
to ascertain its origin; an intruder should not be able to 
masquerade as someone else. Integrity means that it 
should be possible for the receiver of a message to 
verify that it has not been modified in transit; an 
intruder should not be able to substitute a false message 
for a legitimate one. Non-repudiation means that a 
sender should not be able to falsely deny later that he 
sent a message. 

To achieve the previous security goals, some secret 
piece of information should be shared, which is referred 
to as a cryptographic key. The problem of distributing 
the secret keys for cryptographic algorithms is known as 
key management.  

Cryptographers often classify encryption algorithms 
according to the type of transformation and keys; that is, 
the key management scheme employed. Each class 
solves a different set of cryptographic problems. Some 
classes require that parties first agree on a secret key by 
secure means that is separate from the normal 
communication protocol; others do not have this 
limitation. The algorithms are classified accordingly 
into: Secret-Key (symmetric key) Cryptosystems (SKC) 
and Public-Key (asymmetric key) Cryptosystems (PKC). 
In the former, the sender and receiver both use the same 
secret key, one could think of a symmetric algorithm as a 
safe. Someone with the key can open the safe, put a 
document inside, and close it again. Someone else with 
the key can open the safe and take the document out. 
While in the latter, the receiver only is in possession of 
the secret key and publishes the corresponding public 
key. The public key is obtained by a suitable one-way 
trapdoor transformation to the secret key. A one-way 
trapdoor function is a function which is difficult to find 
its inverse unless given the trapdoor information (key). It 
is as if someone turned the cryptographic safe into a 
mailbox. Putting mail in the mail box is analogous to 
encrypting with the public key; anyone can do it. Just 
open the slot and drop it in. Getting mail out of a mailbox 
is analogous to decrypting with the private key. 
Generally, it’s hard; you need welding torches. However, 
if you have the secret (the physical key to the mailbox), 
it’s easy to get mail out of a mailbox. 

Symmetric key algorithms are known for their 
computational efficiency; however, there are several 
problems in such cryptosystems. First of all, keys must 
be distributed in secret; that is, there is a need for 
private channels. Moreover, assuming a separate key is 
used for each pair of users in a network, the total 
number of keys increases rapidly as the number of users 
increase. A network of n users requires n(n -1) /2 keys. 
Furthermore, since both the sender and receiver share 
the same secret key, symmetric-key cryptosystems are 
not suitable for achieving authentication. 

Symmetric-key algorithms are further divided into 
two classes; which are stream ciphers and block ciphers. 
Stream ciphers are an important class of symmetric key 
encryption algorithms [1]. They encrypt individual 
characters of a plaintext message one at a time using an 
encryption transformation which varies with time. By 
contrast, block ciphers tend to simultaneously encrypt 
groups of characters of a plaintext message using a 

– 34 – – 35 – 

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, August 31 – September 3, 2014



fixed encryption transformation.  
Public-key cryptography solves the key-management 

problem with symmetric-key cryptosystems. With no 
prior arrangements, the transmitter can send a secure 
message to the receiver. An eavesdropper, listening in 
on the entire exchange, has access to the receiver’s 
public key and a message encrypted in that key, but 
cannot recover either receiver’s private key or the 
message. Moreover, public key cryptosystems offer a 
good method for providing authentication. Furthermore, 
the invention of public key cryptosystems gave rise to a 
new and remarkable idea, which is the concept of digital 
signature. The digital signature is the electronic analogue 
of the handwritten signature. A signer can digitally sign a 
document with a secret key (Private Key), and generates 
a signature on that document. The signer then sends the 
generated signature, a document and its public key to any 
verifier. Therefore, a verifier can check the validity of the 
signature with the corresponding public key.  

Traditionally, any involved party must register his 
public key with a central authority, which is known as the 
Certificate Authority (CA). The CA issues digital 
certificates providing the link between a user's identity 
and its public key. Actually, the certificate is nothing but 
a digital signature generated by the CA for this 
information. 

Another famous type of public-key encryption is the 
Identity Based Encryption (IBE), in which the public key 
of a user is some unique information about the identity of 
the user (e.g. a user's email address) and the private key is 
generated by a key generation center. 

Certificateless public-key encryption (CL-PKE) [2, 3] 
is a form of public-key encryption that is designed to 
eliminate the disadvantages of both traditional 
public-key encryption scheme and identity-based 
encryption. Unlike public-key encryption, there is no 
requirement for digital certificates or a public-key 
infrastructure. Unlike identity-based encryption, the 
trusted third party need not be given the ability to decrypt 
ciphertexts intended for users. Certificateless public-key 
encryption integrates together the benefits of traditional 
PKI-based public-key encryption and identity-based 
encryption. They provide security without the need for a 
public key to be signed by a certificate authority. Also, 
they remain secure against attacks made by any third 
party (including a key generation center or a certificate 
authority) 

The rest of the paper is organized as follows. In the 
next section, symmetric-key cryptosystems are 
explained together with a comparative study. Then, 
traditional, certificate-based public key cryptosystems 
are reviewed in Section 3. Identity-Based 
Cryptosystems and Certificateless Public-Key 
Encryption CL-PKE are examined in Section 4 and 
Section 5. Finally, the last section concludes the paper. 
 

2 Symmetric key cryptosystems 
2.1 Stream ciphers  

  A stream cipher is a type of symmetric key 
cryptosystem. The idea of stream ciphers was inspired 
from the famous cipher called the One-time Pad [1]. 
This cipher is based on XORing the message bits and 

the key bits as iii kmc  , where im  are the 
message bits and ik  are the corresponding key bits. 
Feedback shift registers, in particular linear feedback 
shift registers (LFSRs), are the basic building blocks in 
most stream ciphers. However, algorithms such as RC4 
[4] and SEAL [5] are examples of software-oriented 
implementations of stream ciphers not based on LFSRs.  

The latest classification [6] divides stream ciphers 
into three main categories Hardware-based stream 
ciphers, Software-Based stream ciphers and Hybrid 
designs of stream ciphers.  

The classification aims to look at stream ciphers from 
the implementation perspectives. The in-depth 
classification of hardware-based stream ciphers include: 
FCSR/NLFSR-based, clock control based and 
LFSR-based stream ciphers. On the other hand 
software-based stream ciphers include: T-function based, 
block cipher-based, S-box-based and simple logical and 
arithmetic operations. The last category, the hybrid 
designs, includes those stream ciphers which depend on 
the combination of both hardware and software 
techniques in their constructional designs. A 
comprehensive classification of stream ciphers is 
described in Table 1. 

 
Table 1 Stream ciphers classifications 

Stream ciphers 
Hardware-based Software- 

Based 
Hybrid 
Design 

Shift register T-Function   
LFSR NLFSR/

FCSR 
Clock 
control 

S-Box 

Shrinking & self 
Shrinking 

Stop & 
Go 

Block Cipher 

Summation Cascades Simple 
logical & 

Arithmetic 
operations  

Boolean Function ABSG 

 
Table 2 Best known examples of stream ciphers 

Stream 
Cipher 

First 
published  

Classification  

RC4 Rivest 
1987 

Software based stream 
cipher 

FISH Siemens 
1993 

Software based stream 
cipher 

PANAMA Daemen 
1998 

Hash function and Software 
based stream cipher 

SCREAM Halevi 
2002 

S-Box 

RABBIT Boesgaard 
2003 

Simple logical & Arithmetic 
operations 

SNOW Pre-2003 
Combination of  LFSR and 

a Finite State 
Machine (FSM) 

Grain Pre-2004 LFSR and NLFSR 

Py Pre-2004 Software based stream 
cipher 

VEST O'Neil 
2007 NLFSR and T function 

 
The best known stream cipher algorithms with some 

brief information about creation date, effective key 
length and complexity are shown in Table 2. 
2.2 Block ciphers 

  Block ciphers is the second type of symmetric key 
ciphers. The simplest techniques for encrypting a block 
of symbols are substitution and permutation. 
Substitution replaces a symbol by another, while 
permutation moves the symbols of a block around. 
Neither substitution nor permutation work very well by 
themselves. Frequency analysis, using the relative 
commonness of letters, pairs of letters, etc., is a strong 
tool against both. However, a proper combination of 
simple operations such as  , substitution and 
permutation produces a cryptosystem whose strength is 
greater than the sum of its component. 

An iterated block cipher [7] is a cryptosystem on a 
block of symbols that sequentially repeats an internal 
function called a round. Iteration is a natural way to 
proceed because that yields an algorithm with a small 
set of instructions, an important issue for hardware 
implementations. 
In Feistel ciphers, the 2t-bit input block is split into t-bit 
halves 00 , RL  and proceed as follows:  
In the thi  round, the right half of the previous round 
becomes the new left half 

1 ii RL  

While the new right half iR  is the XOR of the 
previous left half and a preferably non-linear function of 
a   round sub-key iK  and the previous right half. 

),( 11 iiii KRfLR    

The inverse process is pretty similar to the above 
construction. Working backwards, 

i1i LR      

 )K,R(fRL i1ii1i    
 
regardless of the round function f used.  
Decryption is actually the algorithm run in reverse with 
sub-keys used in the opposite order. In order to make 
decryption a genuine inverse of encryption, the final 
round of a Feistel cipher switches the ciphertext to

)L,R( rr .  
DES (Data Encryption Standard) is a 16-round 

Feistel cipher [8]. Encrypting ordinary text in DES 
begins by grouping the text into 64-bit blocks. An initial 
permutation is applied in the beginning and its inverse is 
applied in the end. In DES, the sub-keys selection or 
key schedule starts by splitting the 56-bit key into two 
28-bit halves and then rotating each half one or two bits 
(one bit in rounds 1,2,9 and 16; two bits otherwise). The 
two halves are put together and then 48 particular bits 
are chosen and put into some prescribed order. The 
rotation ensures that a different subset of key bits is 
used for each of the sixteen rounds. Due to cryptanalytic 
attacks against DES, such as linear [9] and differential 
attacks [10], the need for a new encryption standard 
arose. 
    The Advanced Encryption Standard (AES) was 

announced by the National Institute of Standards and 
Technology (NIST) [11]. Nowadays, AES has become 
one of the most popular algorithms used in symmetric 
key cryptography. It is an iterated block cipher with 
block size 128 bits. The cipher key is 128, 192 or 256 
bits in length. Unlike DES (the predecessor of AES), 
AES is a substitution-permutation network, that is, a 
series of linked mathematical operations, not a Feistel 
network. AES is fast in both software and hardware, is 
relatively easy to implement and requires little memory. 
In 2011, Amber Jain started a careful study of 
specifications, variations of 5 symmetric block cipher 
algorithms (Blowfish, Camellia, CAST-128, DES and 
IDEA) [12]. During this investigation, notable design 
guidelines were collected to reach to a comparison of 
symmetric block cipher algorithms, which is depicted in 
Table 3. 

Block ciphers has many modes of operation which 
describe how to repeatedly apply a cipher's single-block 
operation to securely transform amounts of data larger 
than a block such as ECB (electronic codebook), CBC 
(cipher block chaining), CFB (cipher feedback), OFB 
(output feedback). Summary of Block Cipher Modes of 
operation is provided in [13]. 

  
Table 3 Best known examples of Block Ciphers 

 
2.3 Stream ciphers versus block ciphers 

In this subsection, the differences between two 
approaches are summarized.   
(a) Idea  
   Stream ciphers partition the text into small blocks 
(e.g. 1 bit) and let the encoding of each block depend on 
many previous blocks. While the block cipher partition 

Property 
 

Blowfish Camellia 
 

CAST-128 
 

DES 
 

Key length 8–448 bits 
in 

steps of 8 
bits 

 

128, 192 
or 

256 bits 
 

40 to 128 
bits 

56 bit 
 

Variable 
key length 

 
 

Yes Yes Yes No 

Type Feistel Feistel Feistel Balance
d Feistel 

 
Block Size 64 bits 128 bit 64 bits 64 bit 
Avalanche Yes Yes Yes Yes 

Coding 
effort 

needed 
 

Comparati
vely 
easy 

 

Comparati
vely 
easy 

 

Comparativ
ely 

easy 
 

Compar
atively 

Difficult 

Weak keys Yes Probably 
yes 

Probably 
yes 

Yes 

S box Yes Yes Yes Yes 
Precomput

able 
subkeys 

 

Yes Yes Yes Yes 

Rounds 16 
(feistel) 

18 or 24 
(feistel) 

 

12 or 16 
(feistel) 

 

16 
(feistel) 

Current 
state 

 
Secure 

Secure Insecure Highly 
insecure 
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fixed encryption transformation.  
Public-key cryptography solves the key-management 

problem with symmetric-key cryptosystems. With no 
prior arrangements, the transmitter can send a secure 
message to the receiver. An eavesdropper, listening in 
on the entire exchange, has access to the receiver’s 
public key and a message encrypted in that key, but 
cannot recover either receiver’s private key or the 
message. Moreover, public key cryptosystems offer a 
good method for providing authentication. Furthermore, 
the invention of public key cryptosystems gave rise to a 
new and remarkable idea, which is the concept of digital 
signature. The digital signature is the electronic analogue 
of the handwritten signature. A signer can digitally sign a 
document with a secret key (Private Key), and generates 
a signature on that document. The signer then sends the 
generated signature, a document and its public key to any 
verifier. Therefore, a verifier can check the validity of the 
signature with the corresponding public key.  

Traditionally, any involved party must register his 
public key with a central authority, which is known as the 
Certificate Authority (CA). The CA issues digital 
certificates providing the link between a user's identity 
and its public key. Actually, the certificate is nothing but 
a digital signature generated by the CA for this 
information. 

Another famous type of public-key encryption is the 
Identity Based Encryption (IBE), in which the public key 
of a user is some unique information about the identity of 
the user (e.g. a user's email address) and the private key is 
generated by a key generation center. 

Certificateless public-key encryption (CL-PKE) [2, 3] 
is a form of public-key encryption that is designed to 
eliminate the disadvantages of both traditional 
public-key encryption scheme and identity-based 
encryption. Unlike public-key encryption, there is no 
requirement for digital certificates or a public-key 
infrastructure. Unlike identity-based encryption, the 
trusted third party need not be given the ability to decrypt 
ciphertexts intended for users. Certificateless public-key 
encryption integrates together the benefits of traditional 
PKI-based public-key encryption and identity-based 
encryption. They provide security without the need for a 
public key to be signed by a certificate authority. Also, 
they remain secure against attacks made by any third 
party (including a key generation center or a certificate 
authority) 

The rest of the paper is organized as follows. In the 
next section, symmetric-key cryptosystems are 
explained together with a comparative study. Then, 
traditional, certificate-based public key cryptosystems 
are reviewed in Section 3. Identity-Based 
Cryptosystems and Certificateless Public-Key 
Encryption CL-PKE are examined in Section 4 and 
Section 5. Finally, the last section concludes the paper. 
 

2 Symmetric key cryptosystems 
2.1 Stream ciphers  

  A stream cipher is a type of symmetric key 
cryptosystem. The idea of stream ciphers was inspired 
from the famous cipher called the One-time Pad [1]. 
This cipher is based on XORing the message bits and 

the key bits as iii kmc  , where im  are the 
message bits and ik  are the corresponding key bits. 
Feedback shift registers, in particular linear feedback 
shift registers (LFSRs), are the basic building blocks in 
most stream ciphers. However, algorithms such as RC4 
[4] and SEAL [5] are examples of software-oriented 
implementations of stream ciphers not based on LFSRs.  

The latest classification [6] divides stream ciphers 
into three main categories Hardware-based stream 
ciphers, Software-Based stream ciphers and Hybrid 
designs of stream ciphers.  

The classification aims to look at stream ciphers from 
the implementation perspectives. The in-depth 
classification of hardware-based stream ciphers include: 
FCSR/NLFSR-based, clock control based and 
LFSR-based stream ciphers. On the other hand 
software-based stream ciphers include: T-function based, 
block cipher-based, S-box-based and simple logical and 
arithmetic operations. The last category, the hybrid 
designs, includes those stream ciphers which depend on 
the combination of both hardware and software 
techniques in their constructional designs. A 
comprehensive classification of stream ciphers is 
described in Table 1. 

 
Table 1 Stream ciphers classifications 

Stream ciphers 
Hardware-based Software- 

Based 
Hybrid 
Design 

Shift register T-Function   
LFSR NLFSR/

FCSR 
Clock 
control 

S-Box 

Shrinking & self 
Shrinking 

Stop & 
Go 

Block Cipher 

Summation Cascades Simple 
logical & 

Arithmetic 
operations  

Boolean Function ABSG 

 
Table 2 Best known examples of stream ciphers 

Stream 
Cipher 

First 
published  

Classification  

RC4 Rivest 
1987 

Software based stream 
cipher 

FISH Siemens 
1993 

Software based stream 
cipher 

PANAMA Daemen 
1998 

Hash function and Software 
based stream cipher 

SCREAM Halevi 
2002 

S-Box 

RABBIT Boesgaard 
2003 

Simple logical & Arithmetic 
operations 

SNOW Pre-2003 
Combination of  LFSR and 

a Finite State 
Machine (FSM) 

Grain Pre-2004 LFSR and NLFSR 

Py Pre-2004 Software based stream 
cipher 

VEST O'Neil 
2007 NLFSR and T function 

 
The best known stream cipher algorithms with some 

brief information about creation date, effective key 
length and complexity are shown in Table 2. 
2.2 Block ciphers 

  Block ciphers is the second type of symmetric key 
ciphers. The simplest techniques for encrypting a block 
of symbols are substitution and permutation. 
Substitution replaces a symbol by another, while 
permutation moves the symbols of a block around. 
Neither substitution nor permutation work very well by 
themselves. Frequency analysis, using the relative 
commonness of letters, pairs of letters, etc., is a strong 
tool against both. However, a proper combination of 
simple operations such as  , substitution and 
permutation produces a cryptosystem whose strength is 
greater than the sum of its component. 

An iterated block cipher [7] is a cryptosystem on a 
block of symbols that sequentially repeats an internal 
function called a round. Iteration is a natural way to 
proceed because that yields an algorithm with a small 
set of instructions, an important issue for hardware 
implementations. 
In Feistel ciphers, the 2t-bit input block is split into t-bit 
halves 00 , RL  and proceed as follows:  
In the thi  round, the right half of the previous round 
becomes the new left half 

1 ii RL  

While the new right half iR  is the XOR of the 
previous left half and a preferably non-linear function of 
a   round sub-key iK  and the previous right half. 

),( 11 iiii KRfLR    

The inverse process is pretty similar to the above 
construction. Working backwards, 

i1i LR      

 )K,R(fRL i1ii1i    
 
regardless of the round function f used.  
Decryption is actually the algorithm run in reverse with 
sub-keys used in the opposite order. In order to make 
decryption a genuine inverse of encryption, the final 
round of a Feistel cipher switches the ciphertext to

)L,R( rr .  
DES (Data Encryption Standard) is a 16-round 

Feistel cipher [8]. Encrypting ordinary text in DES 
begins by grouping the text into 64-bit blocks. An initial 
permutation is applied in the beginning and its inverse is 
applied in the end. In DES, the sub-keys selection or 
key schedule starts by splitting the 56-bit key into two 
28-bit halves and then rotating each half one or two bits 
(one bit in rounds 1,2,9 and 16; two bits otherwise). The 
two halves are put together and then 48 particular bits 
are chosen and put into some prescribed order. The 
rotation ensures that a different subset of key bits is 
used for each of the sixteen rounds. Due to cryptanalytic 
attacks against DES, such as linear [9] and differential 
attacks [10], the need for a new encryption standard 
arose. 
    The Advanced Encryption Standard (AES) was 

announced by the National Institute of Standards and 
Technology (NIST) [11]. Nowadays, AES has become 
one of the most popular algorithms used in symmetric 
key cryptography. It is an iterated block cipher with 
block size 128 bits. The cipher key is 128, 192 or 256 
bits in length. Unlike DES (the predecessor of AES), 
AES is a substitution-permutation network, that is, a 
series of linked mathematical operations, not a Feistel 
network. AES is fast in both software and hardware, is 
relatively easy to implement and requires little memory. 
In 2011, Amber Jain started a careful study of 
specifications, variations of 5 symmetric block cipher 
algorithms (Blowfish, Camellia, CAST-128, DES and 
IDEA) [12]. During this investigation, notable design 
guidelines were collected to reach to a comparison of 
symmetric block cipher algorithms, which is depicted in 
Table 3. 

Block ciphers has many modes of operation which 
describe how to repeatedly apply a cipher's single-block 
operation to securely transform amounts of data larger 
than a block such as ECB (electronic codebook), CBC 
(cipher block chaining), CFB (cipher feedback), OFB 
(output feedback). Summary of Block Cipher Modes of 
operation is provided in [13]. 

  
Table 3 Best known examples of Block Ciphers 

 
2.3 Stream ciphers versus block ciphers 

In this subsection, the differences between two 
approaches are summarized.   
(a) Idea  
   Stream ciphers partition the text into small blocks 
(e.g. 1 bit) and let the encoding of each block depend on 
many previous blocks. While the block cipher partition 
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Blowfish Camellia 
 

CAST-128 
 

DES 
 

Key length 8–448 bits 
in 

steps of 8 
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128, 192 
or 

256 bits 
 

40 to 128 
bits 

56 bit 
 

Variable 
key length 

 
 

Yes Yes Yes No 

Type Feistel Feistel Feistel Balance
d Feistel 

 
Block Size 64 bits 128 bit 64 bits 64 bit 
Avalanche Yes Yes Yes Yes 

Coding 
effort 

needed 
 

Comparati
vely 
easy 

 

Comparati
vely 
easy 

 

Comparativ
ely 

easy 
 

Compar
atively 

Difficult 

Weak keys Yes Probably 
yes 

Probably 
yes 

Yes 

S box Yes Yes Yes Yes 
Precomput

able 
subkeys 

 

Yes Yes Yes Yes 

Rounds 16 
(feistel) 

18 or 24 
(feistel) 

 

12 or 16 
(feistel) 

 

16 
(feistel) 

Current 
state 

 
Secure 

Secure Insecure Highly 
insecure 
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the text into relatively large (e.g. 128 bits) blocks and 
encode each block separately.  
(b) Key  

In stream ciphers, for each block, a different key is 
generated. While in block ciphers the same key is 
used for each block. 

(c) Hard ware speed and complexity 
   Stream ciphers are faster in hardware than block 
ciphers and have less complex hardware circuits so it is 
more suitable in hard ware implementation while block 
ciphers are more suitable in software implementations. 
(d) Integrity & authentication 
   Stream ciphers do not provide integrity protection or 
authentication while some block ciphers (depending on 
mode) can provide integrity protection, in addition to 
confidentiality. 
(e) Possible reasons to prefer stream ciphers today 

 A smaller footprint in low-end hardware 
implementations  

 Higher encryption speed  
 Smaller input/output delay 
 Simpler protocols for handling small or variable 

sized inputs 
(f) Possible reasons to prefer block ciphers today  

 Availability of standardized schemes 
 More versatile building block 
 Better understanding of security issues 
 Better covered by textbooks and courses 

 
2.4 Strengths and Weaknesses of symmetric-key 

cryptography 
Strengths: Private keys are robustly resistant to brute 

force attacks. While the one-time pad , which combines 
plaintext with a random key, holds secure in the face of 
any attacker regardless of time and computing power, 
symmetric-key algorithms are generally more difficult 
to crack than their public-key counterparts. Additionally, 
secret-key algorithms require less computing power to 
be created compared to equivalent private keys in 
public-key cryptography. 

Weakness: The biggest obstacle in successfully 
deploying a symmetric-key algorithm is the necessity 
for a proper exchange of private keys. This transaction 
must be completed in a secure manner. 

Another problem concerns the compromise of a 
private key; every participant has an identical private 
key. As the number of participants in a transaction 
increases, both the risk of compromise and the 
consequences of such a compromise increase 
dramatically. Each additional user adds another 
potential point of weakness that an attacker could take 
advantage of. If such an attacker succeeds in gaining 
control of just one of the private keys in this world, all 
users, whether hundreds or more of them or only a few, 
are completely compromised.  

 
3 Traditional Public key cryptosystems 

In 1976, Whitfield Diffie and Martin Hellman 
changed that paradigm of cryptography forever [14]. 
They described public-key cryptography. They used two 
different keys one public and the other private. It is 
computationally hard to deduce the private key from the 
public key. Anyone with the public key can encrypt a 

message but not decrypt it. Only the person with the 
private key can decrypt the message. 

Mathematically, the process is based on trap-door 
one-way functions. Encryption is the easy direction. 
Instruments for encryption are the public key and the 
message; anyone can encrypt a message. Decryption is 
the hard direction. It’s made hard enough that people 
with Cray computers and thousands (even millions) of 
years couldn’t decrypt the message without the private 
key. With that secret, decryption is as easy as 
encryption. 
3.1 Hard Computational Problems 

Assume G is a multiplicative cyclic group (large 
prime order subgroups of groups Zp

*) and g is a 
generator of G, then from the definition of cyclic groups, 
we know every element h in G can be written as gx for 
some x  

 Discrete Logarithm Problem (DLP) 
    Given g, h= gx , what is the value of x ? 
 Computational Diffie-Hellman Problem (CDHP) 
    Given an element g and the values of gx and gy,  
    what is the value of gxy ? 
 The Integer-Factorization (IF) Problem 
    Given a positive integer 𝑛𝑛, find its prime factors 

decomposition such that one can write 𝑛𝑛 =
𝑞𝑞1

𝑒𝑒1 𝑞𝑞2
𝑒𝑒2  … 𝑞𝑞𝑘𝑘

𝑒𝑒𝑘𝑘  where 𝑞𝑞𝑖𝑖 ′𝑠𝑠  are pair wise 
distinct primes and 𝑒𝑒𝑖𝑖 ≥ 1.  

 
   The most two famous public key encryption 
algorithms are RSA and ElGamal. RSA cryptosystem 
was invented by Rivest, Shamir and Adelman [15], 
whose security relies on the hardness of the integer 
factorization problem. ElGamal cryptosystem was 
invented by Taher ElGamal [16] and its security relies 
on the hardness of the discrete logarithm problem over 
finite fields. 
 
3.2 Strengths and Weaknesses of public-key 

cryptography 
Strengths: The asymmetric nature of public-key 
cryptography allows it a sizable advantage over 
symmetric-key algorithms. The unique private and 
public keys provided to each user allow them to conduct 
secure exchanges of information without first needing to 
devise some way to secretly swap keys. 
Weakness: Keys in public-key cryptography, due to 
their unique nature, are more computationally costly 
than their counterparts in secret-key cryptography. 
Symmetric keys must be many times longer compared 
to keys in secret-cryptography in order to ensure 
equivalent security. 

Keys in asymmetric cryptography are also more 
vulnerable to brute force attacks than in secret-key 
cryptography. There exist algorithms for public-key 
cryptography that allow attackers to crack private keys 
faster than a brute force method would require. The 
widely used and pioneering RSA algorithm is indeed 
susceptible to attacks in less than brute force time.  
While generating longer keys in other algorithms will 
usually prevent a brute force attack from succeeding in 
any meaningful length of time, these computations 

become more intensive. These longer keys can still vary 
in effectiveness, depending on the computing power 
available to an attacker. 

Public-key cryptography is also vulnerable to various 
attacks, such as the man-in-the-middle attack. In this 
situation, a malicious third party intercepts a public key 
on its way to one of the parties involved. The third party 
can then instead pass along his or her own public key 
with a message claiming to be from the original sender. 
An attacker can use this process at every step of an 
exchange in order to successfully impersonate each 
member of the conversation without any other parties 
becoming aware of this deception. 

 
 4 Identity based cryptosystems  

The concept of identity-based cryptosystems is due to 
Shamir [17]. Such a scheme has the property that a 
user’s public key is an easily calculated function of his 
identity, while a user’s private key can be calculated for 
him by a trusted authority, called private key generator 
(PKG). The ID-based public key cryptosystem can be an 
alternative for certificate-based public key infrastructure 
(PKI), especially when efficient key management and 
moderate security are required. The public key 
distribution problem is eliminated by making each 
user’s public key derivable from some known aspect of 
his identity, such as his email address. The first 
ID-based encryption was proposed by Boneh and 
Franklin [18] in 2001 that uses bilinear pairing as well 
as Cha-Cheon’s efficient ID-based signature scheme 
[19]. 
4.1 Structure of Identity-Based Cryptosystems 
  An identity-based encryption scheme is specified by 
four randomized algorithms: Setup, Extract, Encrypt 
and Decrypt. 
Setup: It takes a security parameter k and returns the 
system parameters params and a master key mk. 
Intuitively, the system parameters will be publicly 
known, while the master key will be known only to the 
Private Key Generator (PKG). 
Extract (Key Generation): It receives as input the 
system parameters, the master secret key mk  and an 
arbitrary user identifier string  *1,0ID . It returns a 
private key dID, which is then delivered to the user 
through a private channel. Here, ID is an arbitrary string 
that will be used as a public key and dID is the 
corresponding private decryption key. The Extract 
algorithm extracts a private key from the given public 
key. 
Encrypt: It takes as input params, recipient’s identifier 
ID  and a message m. It returns a ciphertext σ . 
Decrypt: Its inputs include params , a ciphertext σ  
and a private key dID. It returns the decrypted text m . 
Again, these algorithms must satisfy the standard 
consistency constraint, namely when dID is the private 
key properly generated by the Extract algorithm when it 
is given ID as the public key. 
4.2 Advantages and disadvantages of ID-based 

encryption  
Advantages: It makes maintaining authenticated 

public key directories unnecessary. Instead, a directory 
for authenticated public parameters of PKG’s is required 
which is less burdensome than maintaining a public key 

directory since there are substantially fewer PKGs than 
total users. In particular, if everyone uses a single PKG, 
then everyone in the system can communicate securely 
and users need not perform online lookup of public keys 
or public parameters 

Disadvantages: 
(a) the PKG knows the receiver’s private key, i.e. 

key escrow is inherent in the system which for 
some applications may be a serious problem  

(b) the receiver has to authenticate himself to its 
PKG in the same way as he would authenticate 
himself to a certifying authority (CA) 

(c) the receiver’s PKG requires a secure channel to 
send the receiver his private key 

(d) the receiver has to publish his PKG’s public 
parameters and the sender  must obtain these 
parameters before sending an encrypted 
message to the receiver 
 

5 Certificateless public key cryptosystems 
It is a variant of ID-based cryptography intended to 

prevent the key escrow problem. Ordinarily, keys are 
generated by a certificate authority or a key generation 
center (KGC) who is given complete power and is 
implicitly trusted. To prevent a complete breakdown of 
the system in the case of a compromised KGC, the key 
generation process is split between the KGC and the user. 
The KGC first generates a key pair, where the private key 
is now the partial private key of the system. The 
remainder of the key is a random value generated by the 
user, and is never revealed to anyone, not even the KGC. 
All cryptographic operations by the user are performed 
by using a complete private key which involves both the 
KGC's partial key, and the user's random secret value. 
One disadvantage of this is that the identity information 
no longer forms the entire public key. 

To encrypt a message to another user, three pieces of 
information are needed: 1) the other user's public key and 
2) identity, and also 3) the third party's public 
information. To decrypt, a user just needs to use their 
private key. 
 These are realized by having two separate 
public/private key pairs: 
(a) A standard public/private key pair generated by the 

receiver. The private key is called secret value to 
stay clear from confusion with the full private key of 
the receiver. The public key is made public but 
inevitably is not certified by a certificate authority. 

(b) An identity-based public/private key pair 
comprising of the receiver’s digital identifier, and 
the associated identity-based private key provided 
by a key generation center. This private key is called 
partial private key. 

To encrypt a plaintext, the sender utilizes the 
receiver’s digital identifier and the receiver’s public key. 
To decrypt a ciphertext, the receiver uses the secret 
value generated by him and the partial private key 
provided by the key generation center. 
Certificateless cryptography had a really fast evolution, 
with several schemes being introduced for encryption 
[2] and digital signature [2]. Also, a few alternative 
security models for certificateless encryption have been 
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the text into relatively large (e.g. 128 bits) blocks and 
encode each block separately.  
(b) Key  

In stream ciphers, for each block, a different key is 
generated. While in block ciphers the same key is 
used for each block. 

(c) Hard ware speed and complexity 
   Stream ciphers are faster in hardware than block 
ciphers and have less complex hardware circuits so it is 
more suitable in hard ware implementation while block 
ciphers are more suitable in software implementations. 
(d) Integrity & authentication 
   Stream ciphers do not provide integrity protection or 
authentication while some block ciphers (depending on 
mode) can provide integrity protection, in addition to 
confidentiality. 
(e) Possible reasons to prefer stream ciphers today 

 A smaller footprint in low-end hardware 
implementations  

 Higher encryption speed  
 Smaller input/output delay 
 Simpler protocols for handling small or variable 

sized inputs 
(f) Possible reasons to prefer block ciphers today  

 Availability of standardized schemes 
 More versatile building block 
 Better understanding of security issues 
 Better covered by textbooks and courses 

 
2.4 Strengths and Weaknesses of symmetric-key 

cryptography 
Strengths: Private keys are robustly resistant to brute 

force attacks. While the one-time pad , which combines 
plaintext with a random key, holds secure in the face of 
any attacker regardless of time and computing power, 
symmetric-key algorithms are generally more difficult 
to crack than their public-key counterparts. Additionally, 
secret-key algorithms require less computing power to 
be created compared to equivalent private keys in 
public-key cryptography. 

Weakness: The biggest obstacle in successfully 
deploying a symmetric-key algorithm is the necessity 
for a proper exchange of private keys. This transaction 
must be completed in a secure manner. 

Another problem concerns the compromise of a 
private key; every participant has an identical private 
key. As the number of participants in a transaction 
increases, both the risk of compromise and the 
consequences of such a compromise increase 
dramatically. Each additional user adds another 
potential point of weakness that an attacker could take 
advantage of. If such an attacker succeeds in gaining 
control of just one of the private keys in this world, all 
users, whether hundreds or more of them or only a few, 
are completely compromised.  

 
3 Traditional Public key cryptosystems 

In 1976, Whitfield Diffie and Martin Hellman 
changed that paradigm of cryptography forever [14]. 
They described public-key cryptography. They used two 
different keys one public and the other private. It is 
computationally hard to deduce the private key from the 
public key. Anyone with the public key can encrypt a 

message but not decrypt it. Only the person with the 
private key can decrypt the message. 

Mathematically, the process is based on trap-door 
one-way functions. Encryption is the easy direction. 
Instruments for encryption are the public key and the 
message; anyone can encrypt a message. Decryption is 
the hard direction. It’s made hard enough that people 
with Cray computers and thousands (even millions) of 
years couldn’t decrypt the message without the private 
key. With that secret, decryption is as easy as 
encryption. 
3.1 Hard Computational Problems 

Assume G is a multiplicative cyclic group (large 
prime order subgroups of groups Zp

*) and g is a 
generator of G, then from the definition of cyclic groups, 
we know every element h in G can be written as gx for 
some x  

 Discrete Logarithm Problem (DLP) 
    Given g, h= gx , what is the value of x ? 
 Computational Diffie-Hellman Problem (CDHP) 
    Given an element g and the values of gx and gy,  
    what is the value of gxy ? 
 The Integer-Factorization (IF) Problem 
    Given a positive integer 𝑛𝑛, find its prime factors 

decomposition such that one can write 𝑛𝑛 =
𝑞𝑞1

𝑒𝑒1 𝑞𝑞2
𝑒𝑒2  … 𝑞𝑞𝑘𝑘

𝑒𝑒𝑘𝑘  where 𝑞𝑞𝑖𝑖 ′𝑠𝑠  are pair wise 
distinct primes and 𝑒𝑒𝑖𝑖 ≥ 1.  

 
   The most two famous public key encryption 
algorithms are RSA and ElGamal. RSA cryptosystem 
was invented by Rivest, Shamir and Adelman [15], 
whose security relies on the hardness of the integer 
factorization problem. ElGamal cryptosystem was 
invented by Taher ElGamal [16] and its security relies 
on the hardness of the discrete logarithm problem over 
finite fields. 
 
3.2 Strengths and Weaknesses of public-key 

cryptography 
Strengths: The asymmetric nature of public-key 
cryptography allows it a sizable advantage over 
symmetric-key algorithms. The unique private and 
public keys provided to each user allow them to conduct 
secure exchanges of information without first needing to 
devise some way to secretly swap keys. 
Weakness: Keys in public-key cryptography, due to 
their unique nature, are more computationally costly 
than their counterparts in secret-key cryptography. 
Symmetric keys must be many times longer compared 
to keys in secret-cryptography in order to ensure 
equivalent security. 

Keys in asymmetric cryptography are also more 
vulnerable to brute force attacks than in secret-key 
cryptography. There exist algorithms for public-key 
cryptography that allow attackers to crack private keys 
faster than a brute force method would require. The 
widely used and pioneering RSA algorithm is indeed 
susceptible to attacks in less than brute force time.  
While generating longer keys in other algorithms will 
usually prevent a brute force attack from succeeding in 
any meaningful length of time, these computations 

become more intensive. These longer keys can still vary 
in effectiveness, depending on the computing power 
available to an attacker. 

Public-key cryptography is also vulnerable to various 
attacks, such as the man-in-the-middle attack. In this 
situation, a malicious third party intercepts a public key 
on its way to one of the parties involved. The third party 
can then instead pass along his or her own public key 
with a message claiming to be from the original sender. 
An attacker can use this process at every step of an 
exchange in order to successfully impersonate each 
member of the conversation without any other parties 
becoming aware of this deception. 

 
 4 Identity based cryptosystems  

The concept of identity-based cryptosystems is due to 
Shamir [17]. Such a scheme has the property that a 
user’s public key is an easily calculated function of his 
identity, while a user’s private key can be calculated for 
him by a trusted authority, called private key generator 
(PKG). The ID-based public key cryptosystem can be an 
alternative for certificate-based public key infrastructure 
(PKI), especially when efficient key management and 
moderate security are required. The public key 
distribution problem is eliminated by making each 
user’s public key derivable from some known aspect of 
his identity, such as his email address. The first 
ID-based encryption was proposed by Boneh and 
Franklin [18] in 2001 that uses bilinear pairing as well 
as Cha-Cheon’s efficient ID-based signature scheme 
[19]. 
4.1 Structure of Identity-Based Cryptosystems 
  An identity-based encryption scheme is specified by 
four randomized algorithms: Setup, Extract, Encrypt 
and Decrypt. 
Setup: It takes a security parameter k and returns the 
system parameters params and a master key mk. 
Intuitively, the system parameters will be publicly 
known, while the master key will be known only to the 
Private Key Generator (PKG). 
Extract (Key Generation): It receives as input the 
system parameters, the master secret key mk  and an 
arbitrary user identifier string  *1,0ID . It returns a 
private key dID, which is then delivered to the user 
through a private channel. Here, ID is an arbitrary string 
that will be used as a public key and dID is the 
corresponding private decryption key. The Extract 
algorithm extracts a private key from the given public 
key. 
Encrypt: It takes as input params, recipient’s identifier 
ID  and a message m. It returns a ciphertext σ . 
Decrypt: Its inputs include params , a ciphertext σ  
and a private key dID. It returns the decrypted text m . 
Again, these algorithms must satisfy the standard 
consistency constraint, namely when dID is the private 
key properly generated by the Extract algorithm when it 
is given ID as the public key. 
4.2 Advantages and disadvantages of ID-based 

encryption  
Advantages: It makes maintaining authenticated 

public key directories unnecessary. Instead, a directory 
for authenticated public parameters of PKG’s is required 
which is less burdensome than maintaining a public key 

directory since there are substantially fewer PKGs than 
total users. In particular, if everyone uses a single PKG, 
then everyone in the system can communicate securely 
and users need not perform online lookup of public keys 
or public parameters 

Disadvantages: 
(a) the PKG knows the receiver’s private key, i.e. 

key escrow is inherent in the system which for 
some applications may be a serious problem  

(b) the receiver has to authenticate himself to its 
PKG in the same way as he would authenticate 
himself to a certifying authority (CA) 

(c) the receiver’s PKG requires a secure channel to 
send the receiver his private key 

(d) the receiver has to publish his PKG’s public 
parameters and the sender  must obtain these 
parameters before sending an encrypted 
message to the receiver 
 

5 Certificateless public key cryptosystems 
It is a variant of ID-based cryptography intended to 

prevent the key escrow problem. Ordinarily, keys are 
generated by a certificate authority or a key generation 
center (KGC) who is given complete power and is 
implicitly trusted. To prevent a complete breakdown of 
the system in the case of a compromised KGC, the key 
generation process is split between the KGC and the user. 
The KGC first generates a key pair, where the private key 
is now the partial private key of the system. The 
remainder of the key is a random value generated by the 
user, and is never revealed to anyone, not even the KGC. 
All cryptographic operations by the user are performed 
by using a complete private key which involves both the 
KGC's partial key, and the user's random secret value. 
One disadvantage of this is that the identity information 
no longer forms the entire public key. 

To encrypt a message to another user, three pieces of 
information are needed: 1) the other user's public key and 
2) identity, and also 3) the third party's public 
information. To decrypt, a user just needs to use their 
private key. 
 These are realized by having two separate 
public/private key pairs: 
(a) A standard public/private key pair generated by the 

receiver. The private key is called secret value to 
stay clear from confusion with the full private key of 
the receiver. The public key is made public but 
inevitably is not certified by a certificate authority. 

(b) An identity-based public/private key pair 
comprising of the receiver’s digital identifier, and 
the associated identity-based private key provided 
by a key generation center. This private key is called 
partial private key. 

To encrypt a plaintext, the sender utilizes the 
receiver’s digital identifier and the receiver’s public key. 
To decrypt a ciphertext, the receiver uses the secret 
value generated by him and the partial private key 
provided by the key generation center. 
Certificateless cryptography had a really fast evolution, 
with several schemes being introduced for encryption 
[2] and digital signature [2]. Also, a few alternative 
security models for certificateless encryption have been 
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presented that are, to a great extent, weaker than the 
original model of Al-Riyami–Paterson [2]. In 2008, 
Dent reviewed almost all the security models for 
certificateless encryption [20]. The notion of a 
certificateless public-key encryption scheme was first 
introduced by Al-Riyami and Paterson [2, 3].  
 
There are three different architectures for CL-PKC: 
(a) AP Formulation: In the original Al-Riyami and 

Paterson (AP) formulation [21, 22], the receiver can 
generate their public key at any time. This means 
that the receiver can publish their public key before 
receiving their partial private key from the key 
generation centre. 

(b) BSS Formulation: In the Baek, Safavi-Naini and 
Susilo (BSS) formulation [23], the receiver can only 
generate their public key after receiving the partial 
private key. The partial private key is obtained via a 
single secure message from the key generation 
centre.  

(c) LK-Formulation: In the Lai and Kou (LK) 
formulation [24], the receiver can only generate their 
public key after completing a protocol with the key 
generation centre.  

 
6 Conclusion  

In this paper, the different types of cryptosystems 
available to date have been reviewed. We have provided 
several comparison tables between different 
cryptographic concepts and algorithms, in addition to 
comparing the strengths and weaknesses of different 
schemes. Since there is no absolutely perfect encryption 
scheme that suits all situations, a comparative study is 
very important for most researchers who want to know 
the most appropriate encryption scheme for use in their 
work.  
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Abstract 
A data structure and a set of Euler operators for 
boundary representations of solid models in which the 
principle of duality is strictly achieved are presented. 
This new edge-based data structure is called the 
quarter-edge data structure. A data structure with 
complete symmetry between faces and vertices is 
derived from the quarter-edge.  This data structure 
allows multiple loops of quarter-edges to belong to a 
single vertex.  Euler operators based on the 
quarter-edge and this dual data structure make it 
possible to use the same code to implement two dual 
Euler operations. Duality in data structures and 
programs contribute to the robustness and efficiency in 
the implementation of solid modeling programs.  
These concepts can be extended easily to non-manifold 
solid models.  
Keywords: geometric modeling ， boundary 
representations，solid models  
 

1 Introduction 
There are many fields of study within geometric 

modeling where the principle of duality can be observed.  
The principle of duality between faces and vertices of 
the data structure of boundary represented solid models 
has been pointed out in many papers [1], [8], [6].  This 
duality in boundary represented solid modelers is also 
seen in Euler operators, which are the basic 
modification functions for boundary representation data 
structures.  

Duality in geometric processing enables us to use 
a common structure for a pair of data elements and 
enables us to use common code for dual Euler 
operations.  This duality makes programming efficient 
in size ， execution speed and time required for 
development and maintenance. The theoretical duality 
of the data structure also guarantees the completeness 
and reliability of the program.   

Although the principle of duality in the data 
structure and Euler operators of solid modelers has been 
noted in literature，  not much research has been 
attempted to effectively exploit the underlying 
possibilities of using the principle of duality in solid 
modeling programs.  For example， there seems to be 
very few solid modelers which use the same code for a 

pair of Euler operations.  One reason for this is that 
duality in conventional data structures and Euler 
operators is incomplete in manifold solid models．
Therefore，there has not been enough pursuit on the 
theoretical aspects of duality in data structures and Euler 
operations.  The incompleteness of the duality in the 
data structure and Euler operations have been partially 
responsible for the inability to derive adequate data 
structures for non-manifold models． In order to fully 
incorporate the advantages of using the principle of 
duality in solid modelers, we must derive a more 
completely symmetric data structure. 

This paper proposes a new edge-based data 
structure called the quarter-edge data structure which 
enables the programmer to have complete symmetry in 
Euler operators and some other basic solid modeling 
functions.  A solid model representation based on this 
data structure is derived， and Euler operators are 
implemented for these solid models.  This solid model 
fully utilizes the duality between faces and vertices in 
solid models.  The topological data structure proposed 
in this paper can be implemented in a solid model 
combined with a geometric intersection computation 
and detection library based on the principle of duality 
between geometric entities, namely, points and planes. 

 
2 Edge-based representation of solid models  
2.1 Conventional edge-based data structures  
(1) The winged-edge data structure 

The winged-edge data structure (WE) is a 
commonly used data structure for representing solid 
models.  The WE data structure is an edge-based data 
structure, which means that solid models are represented 
based on the connectivity of topological entities with 
respect to edges [2], [3].  A conceptual diagram of the 
WE data structure is shown in Fig. 1.  The left part of 
Fig. 1 illustrates the relative positions of the data 
elements, which are stored as pointers, in the solid 
model.  Each WE stores pointers to the two faces and 
the two vertices adjacent to the edge, represented 
respectively as Face0, Face1, Vertex0, Vertex1 in the 
diagram. The other pointers are references to the WE 
which are adjacent to this WE．Wcw0 and Wccw0 are 
the Wes adjacent to this WE in a clockwise and 
counter-clockwise order along Face0.  Similarly, 
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