
• change of compliance responses under operational
condition

• imbalance excitation.

process behavior
• material behavior depending on cutting speed
• notable process damping in cases of k > 5.
4 Stability analysis by FE simulation with

integrated cutting process
 Apart from the listed difficulties a further
development has been initiated to directly allow the
comparison of alternative conceptual variants regarding
the process stability during the design process. For this
purpose analytical process models for turning and
milling have been implemented for use in the FEA
software packages ANSYS and PERMAS during the
BMBF project “VispaB”.

Extensive cutting tests have been realized to attain
sufficient information on cutting force coefficients and
suitable stability criteria. The following parameters are
necessary to describe stationary cutting conditions for
e.g. groove milling and to carry out an integated cutting
process stability calculation [6]:
• tool geometry: number of teeth, tooth pitch angle
• workpiece material
• cutting force model (linear or exponential)
• stability criteria
• cutting depth, tooth feed, spindle speed (constant

speed or sinusoidal speed variation)
• number of analysed tool rotations.

Figure 6 shows the applied method for a H5000

type horizontal machining centre of Gebr. Heller
Maschinenfabrik GmbH, Nürtingen.

To gain all data for a complete stability chart of a
reference milling process different loops with basically
transient sub-simulations have to be conducted:
• increasing tool rotation
• different cutting depth
• different spindle speed.

Fig. 6 FE simulation of Heller H5000 with integrated
cutting process for the prediction of stability
charts

Figure 7 shows a stability chart gained from FE
simulation with integrated cutting process using the
time-dependent chip-thickness modulation (Fig. 2 left)
determined by spatial movement of tool centre and
workpiece as a stability criteria.

Fig. 7 Stability chart gained from FE simulation with
integrated cutting process

This method has entered the development process chain
of a few german machine tool manufacturers to evaluate
machine designs with respect to process stability and to
compare alternative conceptual variants in achievable
cutting depth before manufacturing any part of a new
machine. Actual experiences are rare but will be
expected after ongoing product design processes are
concluded.

5 Conclusions

However, in summary the evaluation of process
stability during the development process of machine
tools is of high importance for fast introduction of new
products into the market and for less design expenses.
Furthermore it supplies novel opportunities to reach the
machine tool users expectations in higher productivity.

References
[1] T. Surmann, D. Biermann, G. Kehl, “Oscillator

Model of Machine Tools for the Simulation of Self
Excited Vibrations in Machining Processes”,
Proceedings of the 1st International Conference on
Process Machine Interactions, (2008), Hannover.

[2] A. Broos, J. Will, A. Melchinger, G. Kehl, S. Röck,
“Sensitivitätsstudien und Parameteroptimierung
bei der virtuellen Produktentwicklung von
Werkzeugmaschinen“ (Sensitivity Study and
Parameter Optimization in the Virtual Product
Development of Machine Tools), 3. Weimarer
Optimierungs- und Stochastiktage (2006), Weimar.

[3] R. Alber, “Systemsimulation in ANSYS integriert”
(ANSYS Integrated Systems Simulation),
CADFEM-Infoplaner, No. 2, (2006), pp. 22-23.

[4] Y. Altintas, M. Weck, Chatter Stability of Metal
Cutting and Grinding”, Annals of CIRP, Key Note
Paper of STC-M, (2004), Vol. 53/2, pp. 619-642.

[5] L.T. Tunc, E. Budak, “Identification and Modeling
of Process Damping in Milling”, Journal of
Manufacturing Science and Engineering 135(2),
(2013).

[6] R. Rauch, “Damit es weniger rattert“ (For less
Chatter), CADFEM-Infoplaner, No. 1, (2012), pp.
16-19.

Received on August 20, 2013
Accepted on February 3, 20

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, September 1-3, 2014

Copyright © 2014, The Organizing Committee of the ICDES 2014

A Survey of Cryptographic Protocols

Mervat Mikhail*1, Yasmine Abouelsoud*2 and Galal El Kobrosy*3
*1 Assistant lecturer

Engineering Mathematics Department
Alexandria University, Alexandria 21544, EGYPT
mervatmekhaeil@yahoo.com

*2 Assistant professor of Engineering Mathematics
 yasmineabosoud@gmail.com

 *3 Professor of Engineering Mathematics
 elkobrosy@yahoo.com

Abstract
With the recent acceleration in research into
cryptography, we consider this a suitable moment to
compare different cryptosystems. In this paper, a survey
on cryptographic standards and algorithms is presented.
First, the concept of cryptography is explained as well
as its most common practical problems. Second,
classification of cryptographic algorithms according to
key management scheme is provided. A literature
review of the most famous protocols together with some
tables of comparison is presented. The main goal of this
survey is to answer the question “What are the
differences between these cryptographic schemes from a
practical viewpoint?” The aim of this paper is to
identify the distinguishing features of each. In doing so,
we highlight the important questions to be asked when
weighing up the benefits and drawbacks of each
scheme.
Keywords: cryptographic protocols, symmetric key
cryptosystem, public key cryptosystem, stream ciphers;
block ciphers, identity-based cryptosystems ID-PKC,
certificateless public-key cryptosystem CL-PKC

1 Introduction
Secure communication in a strongly interconnected

world has become an impelling need. With the advent in
communication technologies and the Internet, new
challenges and applications in the field of security have
emerged.

Cryptography is the art of keeping messages secure.
In addition to providing confidentiality, cryptography is
often asked to do other jobs such as authentication,
integrity and non-repudiation. Authentication means
that it should be possible for the receiver of a message
to ascertain its origin; an intruder should not be able to
masquerade as someone else. Integrity means that it
should be possible for the receiver of a message to
verify that it has not been modified in transit; an
intruder should not be able to substitute a false message
for a legitimate one. Non-repudiation means that a
sender should not be able to falsely deny later that he
sent a message.

To achieve the previous security goals, some secret
piece of information should be shared, which is referred
to as a cryptographic key. The problem of distributing
the secret keys for cryptographic algorithms is known as
key management.

Cryptographers often classify encryption algorithms
according to the type of transformation and keys; that is,
the key management scheme employed. Each class
solves a different set of cryptographic problems. Some
classes require that parties first agree on a secret key by
secure means that is separate from the normal
communication protocol; others do not have this
limitation. The algorithms are classified accordingly
into: Secret-Key (symmetric key) Cryptosystems (SKC)
and Public-Key (asymmetric key) Cryptosystems (PKC).
In the former, the sender and receiver both use the same
secret key, one could think of a symmetric algorithm as a
safe. Someone with the key can open the safe, put a
document inside, and close it again. Someone else with
the key can open the safe and take the document out.
While in the latter, the receiver only is in possession of
the secret key and publishes the corresponding public
key. The public key is obtained by a suitable one-way
trapdoor transformation to the secret key. A one-way
trapdoor function is a function which is difficult to find
its inverse unless given the trapdoor information (key). It
is as if someone turned the cryptographic safe into a
mailbox. Putting mail in the mail box is analogous to
encrypting with the public key; anyone can do it. Just
open the slot and drop it in. Getting mail out of a mailbox
is analogous to decrypting with the private key.
Generally, it’s hard; you need welding torches. However,
if you have the secret (the physical key to the mailbox),
it’s easy to get mail out of a mailbox.

Symmetric key algorithms are known for their
computational efficiency; however, there are several
problems in such cryptosystems. First of all, keys must
be distributed in secret; that is, there is a need for
private channels. Moreover, assuming a separate key is
used for each pair of users in a network, the total
number of keys increases rapidly as the number of users
increase. A network of n users requires n(n -1) /2 keys.
Furthermore, since both the sender and receiver share
the same secret key, symmetric-key cryptosystems are
not suitable for achieving authentication.

Symmetric-key algorithms are further divided into
two classes; which are stream ciphers and block ciphers.
Stream ciphers are an important class of symmetric key
encryption algorithms [1]. They encrypt individual
characters of a plaintext message one at a time using an
encryption transformation which varies with time. By
contrast, block ciphers tend to simultaneously encrypt
groups of characters of a plaintext message using a

– 34 – – 35 –

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, August 31 – September 3, 2014

fixed encryption transformation.
Public-key cryptography solves the key-management

problem with symmetric-key cryptosystems. With no
prior arrangements, the transmitter can send a secure
message to the receiver. An eavesdropper, listening in
on the entire exchange, has access to the receiver’s
public key and a message encrypted in that key, but
cannot recover either receiver’s private key or the
message. Moreover, public key cryptosystems offer a
good method for providing authentication. Furthermore,
the invention of public key cryptosystems gave rise to a
new and remarkable idea, which is the concept of digital
signature. The digital signature is the electronic analogue
of the handwritten signature. A signer can digitally sign a
document with a secret key (Private Key), and generates
a signature on that document. The signer then sends the
generated signature, a document and its public key to any
verifier. Therefore, a verifier can check the validity of the
signature with the corresponding public key.

Traditionally, any involved party must register his
public key with a central authority, which is known as the
Certificate Authority (CA). The CA issues digital
certificates providing the link between a user's identity
and its public key. Actually, the certificate is nothing but
a digital signature generated by the CA for this
information.

Another famous type of public-key encryption is the
Identity Based Encryption (IBE), in which the public key
of a user is some unique information about the identity of
the user (e.g. a user's email address) and the private key is
generated by a key generation center.

Certificateless public-key encryption (CL-PKE) [2, 3]
is a form of public-key encryption that is designed to
eliminate the disadvantages of both traditional
public-key encryption scheme and identity-based
encryption. Unlike public-key encryption, there is no
requirement for digital certificates or a public-key
infrastructure. Unlike identity-based encryption, the
trusted third party need not be given the ability to decrypt
ciphertexts intended for users. Certificateless public-key
encryption integrates together the benefits of traditional
PKI-based public-key encryption and identity-based
encryption. They provide security without the need for a
public key to be signed by a certificate authority. Also,
they remain secure against attacks made by any third
party (including a key generation center or a certificate
authority)

The rest of the paper is organized as follows. In the
next section, symmetric-key cryptosystems are
explained together with a comparative study. Then,
traditional, certificate-based public key cryptosystems
are reviewed in Section 3. Identity-Based
Cryptosystems and Certificateless Public-Key
Encryption CL-PKE are examined in Section 4 and
Section 5. Finally, the last section concludes the paper.

2 Symmetric key cryptosystems
2.1 Stream ciphers

 A stream cipher is a type of symmetric key
cryptosystem. The idea of stream ciphers was inspired
from the famous cipher called the One-time Pad [1].
This cipher is based on XORing the message bits and

the key bits as iii kmc  , where im are the
message bits and ik are the corresponding key bits.
Feedback shift registers, in particular linear feedback
shift registers (LFSRs), are the basic building blocks in
most stream ciphers. However, algorithms such as RC4
[4] and SEAL [5] are examples of software-oriented
implementations of stream ciphers not based on LFSRs.

The latest classification [6] divides stream ciphers
into three main categories Hardware-based stream
ciphers, Software-Based stream ciphers and Hybrid
designs of stream ciphers.

The classification aims to look at stream ciphers from
the implementation perspectives. The in-depth
classification of hardware-based stream ciphers include:
FCSR/NLFSR-based, clock control based and
LFSR-based stream ciphers. On the other hand
software-based stream ciphers include: T-function based,
block cipher-based, S-box-based and simple logical and
arithmetic operations. The last category, the hybrid
designs, includes those stream ciphers which depend on
the combination of both hardware and software
techniques in their constructional designs. A
comprehensive classification of stream ciphers is
described in Table 1.

Table 1 Stream ciphers classifications

Stream ciphers
Hardware-based Software-

Based
Hybrid
Design

Shift register T-Function
LFSR NLFSR/

FCSR
Clock
control

S-Box

Shrinking & self
Shrinking

Stop &
Go

Block Cipher

Summation Cascades Simple
logical &

Arithmetic
operations

Boolean Function ABSG

Table 2 Best known examples of stream ciphers

Stream
Cipher

First
published

Classification

RC4 Rivest
1987

Software based stream
cipher

FISH Siemens
1993

Software based stream
cipher

PANAMA Daemen
1998

Hash function and Software
based stream cipher

SCREAM Halevi
2002

S-Box

RABBIT Boesgaard
2003

Simple logical & Arithmetic
operations

SNOW Pre-2003
Combination of LFSR and

a Finite State
Machine (FSM)

Grain Pre-2004 LFSR and NLFSR

Py Pre-2004 Software based stream
cipher

VEST O'Neil
2007 NLFSR and T function

The best known stream cipher algorithms with some

brief information about creation date, effective key
length and complexity are shown in Table 2.
2.2 Block ciphers

 Block ciphers is the second type of symmetric key
ciphers. The simplest techniques for encrypting a block
of symbols are substitution and permutation.
Substitution replaces a symbol by another, while
permutation moves the symbols of a block around.
Neither substitution nor permutation work very well by
themselves. Frequency analysis, using the relative
commonness of letters, pairs of letters, etc., is a strong
tool against both. However, a proper combination of
simple operations such as  , substitution and
permutation produces a cryptosystem whose strength is
greater than the sum of its component.

An iterated block cipher [7] is a cryptosystem on a
block of symbols that sequentially repeats an internal
function called a round. Iteration is a natural way to
proceed because that yields an algorithm with a small
set of instructions, an important issue for hardware
implementations.
In Feistel ciphers, the 2t-bit input block is split into t-bit
halves 00 , RL and proceed as follows:
In the thi round, the right half of the previous round
becomes the new left half

1 ii RL

While the new right half iR is the XOR of the
previous left half and a preferably non-linear function of
a round sub-key iK and the previous right half.

),(11 iiii KRfLR  

The inverse process is pretty similar to the above
construction. Working backwards,

i1i LR 

)K,R(fRL i1ii1i  

regardless of the round function f used.
Decryption is actually the algorithm run in reverse with
sub-keys used in the opposite order. In order to make
decryption a genuine inverse of encryption, the final
round of a Feistel cipher switches the ciphertext to

)L,R(rr .
DES (Data Encryption Standard) is a 16-round

Feistel cipher [8]. Encrypting ordinary text in DES
begins by grouping the text into 64-bit blocks. An initial
permutation is applied in the beginning and its inverse is
applied in the end. In DES, the sub-keys selection or
key schedule starts by splitting the 56-bit key into two
28-bit halves and then rotating each half one or two bits
(one bit in rounds 1,2,9 and 16; two bits otherwise). The
two halves are put together and then 48 particular bits
are chosen and put into some prescribed order. The
rotation ensures that a different subset of key bits is
used for each of the sixteen rounds. Due to cryptanalytic
attacks against DES, such as linear [9] and differential
attacks [10], the need for a new encryption standard
arose.
 The Advanced Encryption Standard (AES) was

announced by the National Institute of Standards and
Technology (NIST) [11]. Nowadays, AES has become
one of the most popular algorithms used in symmetric
key cryptography. It is an iterated block cipher with
block size 128 bits. The cipher key is 128, 192 or 256
bits in length. Unlike DES (the predecessor of AES),
AES is a substitution-permutation network, that is, a
series of linked mathematical operations, not a Feistel
network. AES is fast in both software and hardware, is
relatively easy to implement and requires little memory.
In 2011, Amber Jain started a careful study of
specifications, variations of 5 symmetric block cipher
algorithms (Blowfish, Camellia, CAST-128, DES and
IDEA) [12]. During this investigation, notable design
guidelines were collected to reach to a comparison of
symmetric block cipher algorithms, which is depicted in
Table 3.

Block ciphers has many modes of operation which
describe how to repeatedly apply a cipher's single-block
operation to securely transform amounts of data larger
than a block such as ECB (electronic codebook), CBC
(cipher block chaining), CFB (cipher feedback), OFB
(output feedback). Summary of Block Cipher Modes of
operation is provided in [13].

Table 3 Best known examples of Block Ciphers

2.3 Stream ciphers versus block ciphers

In this subsection, the differences between two
approaches are summarized.
(a) Idea
 Stream ciphers partition the text into small blocks
(e.g. 1 bit) and let the encoding of each block depend on
many previous blocks. While the block cipher partition

Property

Blowfish Camellia

CAST-128

DES

Key length 8–448 bits
in

steps of 8
bits

128, 192
or

256 bits

40 to 128
bits

56 bit

Variable
key length

Yes Yes Yes No

Type Feistel Feistel Feistel Balance
d Feistel

Block Size 64 bits 128 bit 64 bits 64 bit
Avalanche Yes Yes Yes Yes

Coding
effort

needed

Comparati
vely
easy

Comparati
vely
easy

Comparativ
ely

easy

Compar
atively

Difficult

Weak keys Yes Probably
yes

Probably
yes

Yes

S box Yes Yes Yes Yes
Precomput

able
subkeys

Yes Yes Yes Yes

Rounds 16
(feistel)

18 or 24
(feistel)

12 or 16
(feistel)

16
(feistel)

Current
state

Secure

Secure Insecure Highly
insecure

– 36 – – 37 –

fixed encryption transformation.
Public-key cryptography solves the key-management

problem with symmetric-key cryptosystems. With no
prior arrangements, the transmitter can send a secure
message to the receiver. An eavesdropper, listening in
on the entire exchange, has access to the receiver’s
public key and a message encrypted in that key, but
cannot recover either receiver’s private key or the
message. Moreover, public key cryptosystems offer a
good method for providing authentication. Furthermore,
the invention of public key cryptosystems gave rise to a
new and remarkable idea, which is the concept of digital
signature. The digital signature is the electronic analogue
of the handwritten signature. A signer can digitally sign a
document with a secret key (Private Key), and generates
a signature on that document. The signer then sends the
generated signature, a document and its public key to any
verifier. Therefore, a verifier can check the validity of the
signature with the corresponding public key.

Traditionally, any involved party must register his
public key with a central authority, which is known as the
Certificate Authority (CA). The CA issues digital
certificates providing the link between a user's identity
and its public key. Actually, the certificate is nothing but
a digital signature generated by the CA for this
information.

Another famous type of public-key encryption is the
Identity Based Encryption (IBE), in which the public key
of a user is some unique information about the identity of
the user (e.g. a user's email address) and the private key is
generated by a key generation center.

Certificateless public-key encryption (CL-PKE) [2, 3]
is a form of public-key encryption that is designed to
eliminate the disadvantages of both traditional
public-key encryption scheme and identity-based
encryption. Unlike public-key encryption, there is no
requirement for digital certificates or a public-key
infrastructure. Unlike identity-based encryption, the
trusted third party need not be given the ability to decrypt
ciphertexts intended for users. Certificateless public-key
encryption integrates together the benefits of traditional
PKI-based public-key encryption and identity-based
encryption. They provide security without the need for a
public key to be signed by a certificate authority. Also,
they remain secure against attacks made by any third
party (including a key generation center or a certificate
authority)

The rest of the paper is organized as follows. In the
next section, symmetric-key cryptosystems are
explained together with a comparative study. Then,
traditional, certificate-based public key cryptosystems
are reviewed in Section 3. Identity-Based
Cryptosystems and Certificateless Public-Key
Encryption CL-PKE are examined in Section 4 and
Section 5. Finally, the last section concludes the paper.

2 Symmetric key cryptosystems
2.1 Stream ciphers

 A stream cipher is a type of symmetric key
cryptosystem. The idea of stream ciphers was inspired
from the famous cipher called the One-time Pad [1].
This cipher is based on XORing the message bits and

the key bits as iii kmc  , where im are the
message bits and ik are the corresponding key bits.
Feedback shift registers, in particular linear feedback
shift registers (LFSRs), are the basic building blocks in
most stream ciphers. However, algorithms such as RC4
[4] and SEAL [5] are examples of software-oriented
implementations of stream ciphers not based on LFSRs.

The latest classification [6] divides stream ciphers
into three main categories Hardware-based stream
ciphers, Software-Based stream ciphers and Hybrid
designs of stream ciphers.

The classification aims to look at stream ciphers from
the implementation perspectives. The in-depth
classification of hardware-based stream ciphers include:
FCSR/NLFSR-based, clock control based and
LFSR-based stream ciphers. On the other hand
software-based stream ciphers include: T-function based,
block cipher-based, S-box-based and simple logical and
arithmetic operations. The last category, the hybrid
designs, includes those stream ciphers which depend on
the combination of both hardware and software
techniques in their constructional designs. A
comprehensive classification of stream ciphers is
described in Table 1.

Table 1 Stream ciphers classifications

Stream ciphers
Hardware-based Software-

Based
Hybrid
Design

Shift register T-Function
LFSR NLFSR/

FCSR
Clock
control

S-Box

Shrinking & self
Shrinking

Stop &
Go

Block Cipher

Summation Cascades Simple
logical &

Arithmetic
operations

Boolean Function ABSG

Table 2 Best known examples of stream ciphers

Stream
Cipher

First
published

Classification

RC4 Rivest
1987

Software based stream
cipher

FISH Siemens
1993

Software based stream
cipher

PANAMA Daemen
1998

Hash function and Software
based stream cipher

SCREAM Halevi
2002

S-Box

RABBIT Boesgaard
2003

Simple logical & Arithmetic
operations

SNOW Pre-2003
Combination of LFSR and

a Finite State
Machine (FSM)

Grain Pre-2004 LFSR and NLFSR

Py Pre-2004 Software based stream
cipher

VEST O'Neil
2007 NLFSR and T function

The best known stream cipher algorithms with some

brief information about creation date, effective key
length and complexity are shown in Table 2.
2.2 Block ciphers

 Block ciphers is the second type of symmetric key
ciphers. The simplest techniques for encrypting a block
of symbols are substitution and permutation.
Substitution replaces a symbol by another, while
permutation moves the symbols of a block around.
Neither substitution nor permutation work very well by
themselves. Frequency analysis, using the relative
commonness of letters, pairs of letters, etc., is a strong
tool against both. However, a proper combination of
simple operations such as  , substitution and
permutation produces a cryptosystem whose strength is
greater than the sum of its component.

An iterated block cipher [7] is a cryptosystem on a
block of symbols that sequentially repeats an internal
function called a round. Iteration is a natural way to
proceed because that yields an algorithm with a small
set of instructions, an important issue for hardware
implementations.
In Feistel ciphers, the 2t-bit input block is split into t-bit
halves 00 , RL and proceed as follows:
In the thi round, the right half of the previous round
becomes the new left half

1 ii RL

While the new right half iR is the XOR of the
previous left half and a preferably non-linear function of
a round sub-key iK and the previous right half.

),(11 iiii KRfLR  

The inverse process is pretty similar to the above
construction. Working backwards,

i1i LR 

)K,R(fRL i1ii1i  

regardless of the round function f used.
Decryption is actually the algorithm run in reverse with
sub-keys used in the opposite order. In order to make
decryption a genuine inverse of encryption, the final
round of a Feistel cipher switches the ciphertext to

)L,R(rr .
DES (Data Encryption Standard) is a 16-round

Feistel cipher [8]. Encrypting ordinary text in DES
begins by grouping the text into 64-bit blocks. An initial
permutation is applied in the beginning and its inverse is
applied in the end. In DES, the sub-keys selection or
key schedule starts by splitting the 56-bit key into two
28-bit halves and then rotating each half one or two bits
(one bit in rounds 1,2,9 and 16; two bits otherwise). The
two halves are put together and then 48 particular bits
are chosen and put into some prescribed order. The
rotation ensures that a different subset of key bits is
used for each of the sixteen rounds. Due to cryptanalytic
attacks against DES, such as linear [9] and differential
attacks [10], the need for a new encryption standard
arose.
 The Advanced Encryption Standard (AES) was

announced by the National Institute of Standards and
Technology (NIST) [11]. Nowadays, AES has become
one of the most popular algorithms used in symmetric
key cryptography. It is an iterated block cipher with
block size 128 bits. The cipher key is 128, 192 or 256
bits in length. Unlike DES (the predecessor of AES),
AES is a substitution-permutation network, that is, a
series of linked mathematical operations, not a Feistel
network. AES is fast in both software and hardware, is
relatively easy to implement and requires little memory.
In 2011, Amber Jain started a careful study of
specifications, variations of 5 symmetric block cipher
algorithms (Blowfish, Camellia, CAST-128, DES and
IDEA) [12]. During this investigation, notable design
guidelines were collected to reach to a comparison of
symmetric block cipher algorithms, which is depicted in
Table 3.

Block ciphers has many modes of operation which
describe how to repeatedly apply a cipher's single-block
operation to securely transform amounts of data larger
than a block such as ECB (electronic codebook), CBC
(cipher block chaining), CFB (cipher feedback), OFB
(output feedback). Summary of Block Cipher Modes of
operation is provided in [13].

Table 3 Best known examples of Block Ciphers

2.3 Stream ciphers versus block ciphers

In this subsection, the differences between two
approaches are summarized.
(a) Idea
 Stream ciphers partition the text into small blocks
(e.g. 1 bit) and let the encoding of each block depend on
many previous blocks. While the block cipher partition

Property

Blowfish Camellia

CAST-128

DES

Key length 8–448 bits
in

steps of 8
bits

128, 192
or

256 bits

40 to 128
bits

56 bit

Variable
key length

Yes Yes Yes No

Type Feistel Feistel Feistel Balance
d Feistel

Block Size 64 bits 128 bit 64 bits 64 bit
Avalanche Yes Yes Yes Yes

Coding
effort

needed

Comparati
vely
easy

Comparati
vely
easy

Comparativ
ely

easy

Compar
atively

Difficult

Weak keys Yes Probably
yes

Probably
yes

Yes

S box Yes Yes Yes Yes
Precomput

able
subkeys

Yes Yes Yes Yes

Rounds 16
(feistel)

18 or 24
(feistel)

12 or 16
(feistel)

16
(feistel)

Current
state

Secure

Secure Insecure Highly
insecure

– 36 – – 37 –

the text into relatively large (e.g. 128 bits) blocks and
encode each block separately.
(b) Key

In stream ciphers, for each block, a different key is
generated. While in block ciphers the same key is
used for each block.

(c) Hard ware speed and complexity
 Stream ciphers are faster in hardware than block
ciphers and have less complex hardware circuits so it is
more suitable in hard ware implementation while block
ciphers are more suitable in software implementations.
(d) Integrity & authentication
 Stream ciphers do not provide integrity protection or
authentication while some block ciphers (depending on
mode) can provide integrity protection, in addition to
confidentiality.
(e) Possible reasons to prefer stream ciphers today

 A smaller footprint in low-end hardware
implementations

 Higher encryption speed
 Smaller input/output delay
 Simpler protocols for handling small or variable

sized inputs
(f) Possible reasons to prefer block ciphers today

 Availability of standardized schemes
 More versatile building block
 Better understanding of security issues
 Better covered by textbooks and courses

2.4 Strengths and Weaknesses of symmetric-key

cryptography
Strengths: Private keys are robustly resistant to brute

force attacks. While the one-time pad , which combines
plaintext with a random key, holds secure in the face of
any attacker regardless of time and computing power,
symmetric-key algorithms are generally more difficult
to crack than their public-key counterparts. Additionally,
secret-key algorithms require less computing power to
be created compared to equivalent private keys in
public-key cryptography.

Weakness: The biggest obstacle in successfully
deploying a symmetric-key algorithm is the necessity
for a proper exchange of private keys. This transaction
must be completed in a secure manner.

Another problem concerns the compromise of a
private key; every participant has an identical private
key. As the number of participants in a transaction
increases, both the risk of compromise and the
consequences of such a compromise increase
dramatically. Each additional user adds another
potential point of weakness that an attacker could take
advantage of. If such an attacker succeeds in gaining
control of just one of the private keys in this world, all
users, whether hundreds or more of them or only a few,
are completely compromised.

3 Traditional Public key cryptosystems

In 1976, Whitfield Diffie and Martin Hellman
changed that paradigm of cryptography forever [14].
They described public-key cryptography. They used two
different keys one public and the other private. It is
computationally hard to deduce the private key from the
public key. Anyone with the public key can encrypt a

message but not decrypt it. Only the person with the
private key can decrypt the message.

Mathematically, the process is based on trap-door
one-way functions. Encryption is the easy direction.
Instruments for encryption are the public key and the
message; anyone can encrypt a message. Decryption is
the hard direction. It’s made hard enough that people
with Cray computers and thousands (even millions) of
years couldn’t decrypt the message without the private
key. With that secret, decryption is as easy as
encryption.
3.1 Hard Computational Problems

Assume G is a multiplicative cyclic group (large
prime order subgroups of groups Zp

*) and g is a
generator of G, then from the definition of cyclic groups,
we know every element h in G can be written as gx for
some x

 Discrete Logarithm Problem (DLP)
 Given g, h= gx , what is the value of x ?
 Computational Diffie-Hellman Problem (CDHP)
 Given an element g and the values of gx and gy,
 what is the value of gxy ?
 The Integer-Factorization (IF) Problem
 Given a positive integer 𝑛𝑛, find its prime factors

decomposition such that one can write 𝑛𝑛 =
𝑞𝑞1

𝑒𝑒1 𝑞𝑞2
𝑒𝑒2 … 𝑞𝑞𝑘𝑘

𝑒𝑒𝑘𝑘 where 𝑞𝑞𝑖𝑖 ′𝑠𝑠 are pair wise
distinct primes and 𝑒𝑒𝑖𝑖 ≥ 1.

 The most two famous public key encryption
algorithms are RSA and ElGamal. RSA cryptosystem
was invented by Rivest, Shamir and Adelman [15],
whose security relies on the hardness of the integer
factorization problem. ElGamal cryptosystem was
invented by Taher ElGamal [16] and its security relies
on the hardness of the discrete logarithm problem over
finite fields.

3.2 Strengths and Weaknesses of public-key

cryptography
Strengths: The asymmetric nature of public-key
cryptography allows it a sizable advantage over
symmetric-key algorithms. The unique private and
public keys provided to each user allow them to conduct
secure exchanges of information without first needing to
devise some way to secretly swap keys.
Weakness: Keys in public-key cryptography, due to
their unique nature, are more computationally costly
than their counterparts in secret-key cryptography.
Symmetric keys must be many times longer compared
to keys in secret-cryptography in order to ensure
equivalent security.

Keys in asymmetric cryptography are also more
vulnerable to brute force attacks than in secret-key
cryptography. There exist algorithms for public-key
cryptography that allow attackers to crack private keys
faster than a brute force method would require. The
widely used and pioneering RSA algorithm is indeed
susceptible to attacks in less than brute force time.
While generating longer keys in other algorithms will
usually prevent a brute force attack from succeeding in
any meaningful length of time, these computations

become more intensive. These longer keys can still vary
in effectiveness, depending on the computing power
available to an attacker.

Public-key cryptography is also vulnerable to various
attacks, such as the man-in-the-middle attack. In this
situation, a malicious third party intercepts a public key
on its way to one of the parties involved. The third party
can then instead pass along his or her own public key
with a message claiming to be from the original sender.
An attacker can use this process at every step of an
exchange in order to successfully impersonate each
member of the conversation without any other parties
becoming aware of this deception.

 4 Identity based cryptosystems

The concept of identity-based cryptosystems is due to
Shamir [17]. Such a scheme has the property that a
user’s public key is an easily calculated function of his
identity, while a user’s private key can be calculated for
him by a trusted authority, called private key generator
(PKG). The ID-based public key cryptosystem can be an
alternative for certificate-based public key infrastructure
(PKI), especially when efficient key management and
moderate security are required. The public key
distribution problem is eliminated by making each
user’s public key derivable from some known aspect of
his identity, such as his email address. The first
ID-based encryption was proposed by Boneh and
Franklin [18] in 2001 that uses bilinear pairing as well
as Cha-Cheon’s efficient ID-based signature scheme
[19].
4.1 Structure of Identity-Based Cryptosystems
 An identity-based encryption scheme is specified by
four randomized algorithms: Setup, Extract, Encrypt
and Decrypt.
Setup: It takes a security parameter k and returns the
system parameters params and a master key mk.
Intuitively, the system parameters will be publicly
known, while the master key will be known only to the
Private Key Generator (PKG).
Extract (Key Generation): It receives as input the
system parameters, the master secret key mk and an
arbitrary user identifier string  *1,0ID . It returns a
private key dID, which is then delivered to the user
through a private channel. Here, ID is an arbitrary string
that will be used as a public key and dID is the
corresponding private decryption key. The Extract
algorithm extracts a private key from the given public
key.
Encrypt: It takes as input params, recipient’s identifier
ID and a message m. It returns a ciphertext σ .
Decrypt: Its inputs include params , a ciphertext σ
and a private key dID. It returns the decrypted text m .
Again, these algorithms must satisfy the standard
consistency constraint, namely when dID is the private
key properly generated by the Extract algorithm when it
is given ID as the public key.
4.2 Advantages and disadvantages of ID-based

encryption
Advantages: It makes maintaining authenticated

public key directories unnecessary. Instead, a directory
for authenticated public parameters of PKG’s is required
which is less burdensome than maintaining a public key

directory since there are substantially fewer PKGs than
total users. In particular, if everyone uses a single PKG,
then everyone in the system can communicate securely
and users need not perform online lookup of public keys
or public parameters

Disadvantages:
(a) the PKG knows the receiver’s private key, i.e.

key escrow is inherent in the system which for
some applications may be a serious problem

(b) the receiver has to authenticate himself to its
PKG in the same way as he would authenticate
himself to a certifying authority (CA)

(c) the receiver’s PKG requires a secure channel to
send the receiver his private key

(d) the receiver has to publish his PKG’s public
parameters and the sender must obtain these
parameters before sending an encrypted
message to the receiver

5 Certificateless public key cryptosystems
It is a variant of ID-based cryptography intended to

prevent the key escrow problem. Ordinarily, keys are
generated by a certificate authority or a key generation
center (KGC) who is given complete power and is
implicitly trusted. To prevent a complete breakdown of
the system in the case of a compromised KGC, the key
generation process is split between the KGC and the user.
The KGC first generates a key pair, where the private key
is now the partial private key of the system. The
remainder of the key is a random value generated by the
user, and is never revealed to anyone, not even the KGC.
All cryptographic operations by the user are performed
by using a complete private key which involves both the
KGC's partial key, and the user's random secret value.
One disadvantage of this is that the identity information
no longer forms the entire public key.

To encrypt a message to another user, three pieces of
information are needed: 1) the other user's public key and
2) identity, and also 3) the third party's public
information. To decrypt, a user just needs to use their
private key.
 These are realized by having two separate
public/private key pairs:
(a) A standard public/private key pair generated by the

receiver. The private key is called secret value to
stay clear from confusion with the full private key of
the receiver. The public key is made public but
inevitably is not certified by a certificate authority.

(b) An identity-based public/private key pair
comprising of the receiver’s digital identifier, and
the associated identity-based private key provided
by a key generation center. This private key is called
partial private key.

To encrypt a plaintext, the sender utilizes the
receiver’s digital identifier and the receiver’s public key.
To decrypt a ciphertext, the receiver uses the secret
value generated by him and the partial private key
provided by the key generation center.
Certificateless cryptography had a really fast evolution,
with several schemes being introduced for encryption
[2] and digital signature [2]. Also, a few alternative
security models for certificateless encryption have been

– 38 – – 39 –

the text into relatively large (e.g. 128 bits) blocks and
encode each block separately.
(b) Key

In stream ciphers, for each block, a different key is
generated. While in block ciphers the same key is
used for each block.

(c) Hard ware speed and complexity
 Stream ciphers are faster in hardware than block
ciphers and have less complex hardware circuits so it is
more suitable in hard ware implementation while block
ciphers are more suitable in software implementations.
(d) Integrity & authentication
 Stream ciphers do not provide integrity protection or
authentication while some block ciphers (depending on
mode) can provide integrity protection, in addition to
confidentiality.
(e) Possible reasons to prefer stream ciphers today

 A smaller footprint in low-end hardware
implementations

 Higher encryption speed
 Smaller input/output delay
 Simpler protocols for handling small or variable

sized inputs
(f) Possible reasons to prefer block ciphers today

 Availability of standardized schemes
 More versatile building block
 Better understanding of security issues
 Better covered by textbooks and courses

2.4 Strengths and Weaknesses of symmetric-key

cryptography
Strengths: Private keys are robustly resistant to brute

force attacks. While the one-time pad , which combines
plaintext with a random key, holds secure in the face of
any attacker regardless of time and computing power,
symmetric-key algorithms are generally more difficult
to crack than their public-key counterparts. Additionally,
secret-key algorithms require less computing power to
be created compared to equivalent private keys in
public-key cryptography.

Weakness: The biggest obstacle in successfully
deploying a symmetric-key algorithm is the necessity
for a proper exchange of private keys. This transaction
must be completed in a secure manner.

Another problem concerns the compromise of a
private key; every participant has an identical private
key. As the number of participants in a transaction
increases, both the risk of compromise and the
consequences of such a compromise increase
dramatically. Each additional user adds another
potential point of weakness that an attacker could take
advantage of. If such an attacker succeeds in gaining
control of just one of the private keys in this world, all
users, whether hundreds or more of them or only a few,
are completely compromised.

3 Traditional Public key cryptosystems

In 1976, Whitfield Diffie and Martin Hellman
changed that paradigm of cryptography forever [14].
They described public-key cryptography. They used two
different keys one public and the other private. It is
computationally hard to deduce the private key from the
public key. Anyone with the public key can encrypt a

message but not decrypt it. Only the person with the
private key can decrypt the message.

Mathematically, the process is based on trap-door
one-way functions. Encryption is the easy direction.
Instruments for encryption are the public key and the
message; anyone can encrypt a message. Decryption is
the hard direction. It’s made hard enough that people
with Cray computers and thousands (even millions) of
years couldn’t decrypt the message without the private
key. With that secret, decryption is as easy as
encryption.
3.1 Hard Computational Problems

Assume G is a multiplicative cyclic group (large
prime order subgroups of groups Zp

*) and g is a
generator of G, then from the definition of cyclic groups,
we know every element h in G can be written as gx for
some x

 Discrete Logarithm Problem (DLP)
 Given g, h= gx , what is the value of x ?
 Computational Diffie-Hellman Problem (CDHP)
 Given an element g and the values of gx and gy,
 what is the value of gxy ?
 The Integer-Factorization (IF) Problem
 Given a positive integer 𝑛𝑛, find its prime factors

decomposition such that one can write 𝑛𝑛 =
𝑞𝑞1

𝑒𝑒1 𝑞𝑞2
𝑒𝑒2 … 𝑞𝑞𝑘𝑘

𝑒𝑒𝑘𝑘 where 𝑞𝑞𝑖𝑖 ′𝑠𝑠 are pair wise
distinct primes and 𝑒𝑒𝑖𝑖 ≥ 1.

 The most two famous public key encryption
algorithms are RSA and ElGamal. RSA cryptosystem
was invented by Rivest, Shamir and Adelman [15],
whose security relies on the hardness of the integer
factorization problem. ElGamal cryptosystem was
invented by Taher ElGamal [16] and its security relies
on the hardness of the discrete logarithm problem over
finite fields.

3.2 Strengths and Weaknesses of public-key

cryptography
Strengths: The asymmetric nature of public-key
cryptography allows it a sizable advantage over
symmetric-key algorithms. The unique private and
public keys provided to each user allow them to conduct
secure exchanges of information without first needing to
devise some way to secretly swap keys.
Weakness: Keys in public-key cryptography, due to
their unique nature, are more computationally costly
than their counterparts in secret-key cryptography.
Symmetric keys must be many times longer compared
to keys in secret-cryptography in order to ensure
equivalent security.

Keys in asymmetric cryptography are also more
vulnerable to brute force attacks than in secret-key
cryptography. There exist algorithms for public-key
cryptography that allow attackers to crack private keys
faster than a brute force method would require. The
widely used and pioneering RSA algorithm is indeed
susceptible to attacks in less than brute force time.
While generating longer keys in other algorithms will
usually prevent a brute force attack from succeeding in
any meaningful length of time, these computations

become more intensive. These longer keys can still vary
in effectiveness, depending on the computing power
available to an attacker.

Public-key cryptography is also vulnerable to various
attacks, such as the man-in-the-middle attack. In this
situation, a malicious third party intercepts a public key
on its way to one of the parties involved. The third party
can then instead pass along his or her own public key
with a message claiming to be from the original sender.
An attacker can use this process at every step of an
exchange in order to successfully impersonate each
member of the conversation without any other parties
becoming aware of this deception.

 4 Identity based cryptosystems

The concept of identity-based cryptosystems is due to
Shamir [17]. Such a scheme has the property that a
user’s public key is an easily calculated function of his
identity, while a user’s private key can be calculated for
him by a trusted authority, called private key generator
(PKG). The ID-based public key cryptosystem can be an
alternative for certificate-based public key infrastructure
(PKI), especially when efficient key management and
moderate security are required. The public key
distribution problem is eliminated by making each
user’s public key derivable from some known aspect of
his identity, such as his email address. The first
ID-based encryption was proposed by Boneh and
Franklin [18] in 2001 that uses bilinear pairing as well
as Cha-Cheon’s efficient ID-based signature scheme
[19].
4.1 Structure of Identity-Based Cryptosystems
 An identity-based encryption scheme is specified by
four randomized algorithms: Setup, Extract, Encrypt
and Decrypt.
Setup: It takes a security parameter k and returns the
system parameters params and a master key mk.
Intuitively, the system parameters will be publicly
known, while the master key will be known only to the
Private Key Generator (PKG).
Extract (Key Generation): It receives as input the
system parameters, the master secret key mk and an
arbitrary user identifier string  *1,0ID . It returns a
private key dID, which is then delivered to the user
through a private channel. Here, ID is an arbitrary string
that will be used as a public key and dID is the
corresponding private decryption key. The Extract
algorithm extracts a private key from the given public
key.
Encrypt: It takes as input params, recipient’s identifier
ID and a message m. It returns a ciphertext σ .
Decrypt: Its inputs include params , a ciphertext σ
and a private key dID. It returns the decrypted text m .
Again, these algorithms must satisfy the standard
consistency constraint, namely when dID is the private
key properly generated by the Extract algorithm when it
is given ID as the public key.
4.2 Advantages and disadvantages of ID-based

encryption
Advantages: It makes maintaining authenticated

public key directories unnecessary. Instead, a directory
for authenticated public parameters of PKG’s is required
which is less burdensome than maintaining a public key

directory since there are substantially fewer PKGs than
total users. In particular, if everyone uses a single PKG,
then everyone in the system can communicate securely
and users need not perform online lookup of public keys
or public parameters

Disadvantages:
(a) the PKG knows the receiver’s private key, i.e.

key escrow is inherent in the system which for
some applications may be a serious problem

(b) the receiver has to authenticate himself to its
PKG in the same way as he would authenticate
himself to a certifying authority (CA)

(c) the receiver’s PKG requires a secure channel to
send the receiver his private key

(d) the receiver has to publish his PKG’s public
parameters and the sender must obtain these
parameters before sending an encrypted
message to the receiver

5 Certificateless public key cryptosystems
It is a variant of ID-based cryptography intended to

prevent the key escrow problem. Ordinarily, keys are
generated by a certificate authority or a key generation
center (KGC) who is given complete power and is
implicitly trusted. To prevent a complete breakdown of
the system in the case of a compromised KGC, the key
generation process is split between the KGC and the user.
The KGC first generates a key pair, where the private key
is now the partial private key of the system. The
remainder of the key is a random value generated by the
user, and is never revealed to anyone, not even the KGC.
All cryptographic operations by the user are performed
by using a complete private key which involves both the
KGC's partial key, and the user's random secret value.
One disadvantage of this is that the identity information
no longer forms the entire public key.

To encrypt a message to another user, three pieces of
information are needed: 1) the other user's public key and
2) identity, and also 3) the third party's public
information. To decrypt, a user just needs to use their
private key.
 These are realized by having two separate
public/private key pairs:
(a) A standard public/private key pair generated by the

receiver. The private key is called secret value to
stay clear from confusion with the full private key of
the receiver. The public key is made public but
inevitably is not certified by a certificate authority.

(b) An identity-based public/private key pair
comprising of the receiver’s digital identifier, and
the associated identity-based private key provided
by a key generation center. This private key is called
partial private key.

To encrypt a plaintext, the sender utilizes the
receiver’s digital identifier and the receiver’s public key.
To decrypt a ciphertext, the receiver uses the secret
value generated by him and the partial private key
provided by the key generation center.
Certificateless cryptography had a really fast evolution,
with several schemes being introduced for encryption
[2] and digital signature [2]. Also, a few alternative
security models for certificateless encryption have been

– 38 – – 39 –

presented that are, to a great extent, weaker than the
original model of Al-Riyami–Paterson [2]. In 2008,
Dent reviewed almost all the security models for
certificateless encryption [20]. The notion of a
certificateless public-key encryption scheme was first
introduced by Al-Riyami and Paterson [2, 3].

There are three different architectures for CL-PKC:
(a) AP Formulation: In the original Al-Riyami and

Paterson (AP) formulation [21, 22], the receiver can
generate their public key at any time. This means
that the receiver can publish their public key before
receiving their partial private key from the key
generation centre.

(b) BSS Formulation: In the Baek, Safavi-Naini and
Susilo (BSS) formulation [23], the receiver can only
generate their public key after receiving the partial
private key. The partial private key is obtained via a
single secure message from the key generation
centre.

(c) LK-Formulation: In the Lai and Kou (LK)
formulation [24], the receiver can only generate their
public key after completing a protocol with the key
generation centre.

6 Conclusion

In this paper, the different types of cryptosystems
available to date have been reviewed. We have provided
several comparison tables between different
cryptographic concepts and algorithms, in addition to
comparing the strengths and weaknesses of different
schemes. Since there is no absolutely perfect encryption
scheme that suits all situations, a comparative study is
very important for most researchers who want to know
the most appropriate encryption scheme for use in their
work.

References
[1] A. Menezes, P. van Oorschot and S. Vanstone,

Handbook of Applied Cryptography, CRC Press, Inc.,
(1997).

[2] Sattam S. Al-Riyami and Kenneth Paterson,
“Certificateless public key cryptography”, Springer
Berlin / Heidelberg, (2003).

[3] Sattam S. Al-Riyami., Cryptographic schemes based
on elliptic curve pairings, PhD thesis, Royal
Holloway, University of London, (2004).

[4] R.L. Rivest., “The RC4 Encryption Algorithm”,
RSA Data Security Inc., (1992).

[5] P. Rogaway and D. Coppersmith, “A
software-optimized encryption algorithm”,
Springer-Verlag, Berlin, (1994), pp. 56-63.

[6] K. Suwais, A. Samsudin, “New Classification of
Existing Stream Ciphers”, Computational
Intelligence and modern heuristics, (2010).

[7] S. Landau, Standing the Test of Time: The Data
Encryption Standard, Notices of the AMS, vol. 47(3),
(2000), pp. 341-349.

[8] United States Department of Commerce, National
Bureau of Standards, Federal Information Processing

(FIPS), Publication no. 46, Data Encryption
Standard, (1977).

[9] M. Matsui, “Linear Cryptanalysis Method for DES
Cipher”, In Advances in
Cryptology-EUROCRYPT’93, LNCS 765,
Springer-Verlag, (1994), pp. 386-397.

[10] E. Biham and A. Shamir, “Differential
Cryptanalysis of Des-like Cryptosystems”, Journal
of Cryptology, vol. 4(1), (1991), pp. 3-72.

[11] National Institute of Standards and Technology
(NIST), U.S. Federal Information Processing
Publication (FIPS PUB 197), The Advanced
Encryption Standard, November 26, (2001).

[12] Amber Jain, Investigation of Symmetric Block
Cipher Algorithms, master dissertation, (2011).

[13] Bruce Schneier , Applied Cryptography: Protocols,
Algorithms, and Source Code in C, 2nd Edition,
(1996).

[14] W. Diffie and M.E. Hellman, “New Directions in
Cryptography”, IEEE Transactions on Information
Theory, vol. 22, (1976), pp. 644-654.

[15] R.L. Rivest, A. Shamir and L. Adleman, “A Method
for Obtaining Digital Signatures and Public Key
Cryptosystems”, Communications to the ACM, vol.
21, (1978), pp. 120-126.

[16] T. ElGamal, “A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms”,
IEEE Transactions on Information Theory, vol. 31,
(1985), pp. 469-472.

[17] A. Shamir., “Identity-based Cryptosystems and
Signature Schemes”, Proc. Crypto ’84, LNCS, Vol.
196, Springer, (1985), pp. 47-53.

[18] D. Boneh and M. Franklin, “Identity Based
Encryption from the Weil Pairing”, In Advances in
Cryptology- CRYPTO 2001, LNCS 2139, Springer,
(2001).

[19] J.C. Cha and J.H. Cheon, “An Identity-Based
Signature from Gap Diffie-Hellman Groups”, In
Proceedings of PKC’03, LNCS 2567,
Springer-Verlag, (2003), pp. 18-30.

[20] Alexander w. dent, Benoît Libert & Kenneth G.
Paterson, “Certificateless Encryption Schemes
Strongly Secure in the Standard Model In Public
Key Cryptography”, Springer. ISBN
978-3-540-78439-5, (2008).

[21] S. Al-Riyami, Cryptographic schemes based on,
elliptic curve pairings, PhD thesis, Royal
Holloway,University of London, (2004).

[22] S. Al-Riyami and K. G. Paterson, “Certificateless
public key cryptography”, Springer-Verlag,
(2003).

[23] J. Baek, R. Safavi-Naini and W. Susilo,
“Certificateless public key encryption without
pairing”, Springer-Verlag, (2005).

[24] J. Lai and K. Kou, “Self-generated-certificate
public key encryption without pairing”,
Springer-Verlag, (2007).

Received on December 30, 2013
Accepted on January 31, 2014

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, September 1-3, 2014

Copyright © 2014, The Organizing Committee of the ICDES 2014

The Principle of Duality in Data Structures

and Euler Operators of Solid Modelers
(The Quarter-edge Data Structure)

Masatoshi NIIZEKI *1

*1 Osaka Electro-Communication University
Department of Electro-Mechanical Engineering
18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, JAPAN
niizeki@isc.osakac.ac.jp

Abstract
A data structure and a set of Euler operators for
boundary representations of solid models in which the
principle of duality is strictly achieved are presented.
This new edge-based data structure is called the
quarter-edge data structure. A data structure with
complete symmetry between faces and vertices is
derived from the quarter-edge. This data structure
allows multiple loops of quarter-edges to belong to a
single vertex. Euler operators based on the
quarter-edge and this dual data structure make it
possible to use the same code to implement two dual
Euler operations. Duality in data structures and
programs contribute to the robustness and efficiency in
the implementation of solid modeling programs.
These concepts can be extended easily to non-manifold
solid models.
Keywords: geometric modeling ， boundary
representations，solid models

1 Introduction
There are many fields of study within geometric

modeling where the principle of duality can be observed.
The principle of duality between faces and vertices of
the data structure of boundary represented solid models
has been pointed out in many papers [1], [8], [6]. This
duality in boundary represented solid modelers is also
seen in Euler operators, which are the basic
modification functions for boundary representation data
structures.

Duality in geometric processing enables us to use
a common structure for a pair of data elements and
enables us to use common code for dual Euler
operations. This duality makes programming efficient
in size ， execution speed and time required for
development and maintenance. The theoretical duality
of the data structure also guarantees the completeness
and reliability of the program.

Although the principle of duality in the data
structure and Euler operators of solid modelers has been
noted in literature， not much research has been
attempted to effectively exploit the underlying
possibilities of using the principle of duality in solid
modeling programs. For example， there seems to be
very few solid modelers which use the same code for a

pair of Euler operations. One reason for this is that
duality in conventional data structures and Euler
operators is incomplete in manifold solid models．
Therefore，there has not been enough pursuit on the
theoretical aspects of duality in data structures and Euler
operations. The incompleteness of the duality in the
data structure and Euler operations have been partially
responsible for the inability to derive adequate data
structures for non-manifold models． In order to fully
incorporate the advantages of using the principle of
duality in solid modelers, we must derive a more
completely symmetric data structure.

This paper proposes a new edge-based data
structure called the quarter-edge data structure which
enables the programmer to have complete symmetry in
Euler operators and some other basic solid modeling
functions. A solid model representation based on this
data structure is derived， and Euler operators are
implemented for these solid models. This solid model
fully utilizes the duality between faces and vertices in
solid models. The topological data structure proposed
in this paper can be implemented in a solid model
combined with a geometric intersection computation
and detection library based on the principle of duality
between geometric entities, namely, points and planes.

2 Edge-based representation of solid models
2.1 Conventional edge-based data structures
(1) The winged-edge data structure

The winged-edge data structure (WE) is a
commonly used data structure for representing solid
models. The WE data structure is an edge-based data
structure, which means that solid models are represented
based on the connectivity of topological entities with
respect to edges [2], [3]. A conceptual diagram of the
WE data structure is shown in Fig. 1. The left part of
Fig. 1 illustrates the relative positions of the data
elements, which are stored as pointers, in the solid
model. Each WE stores pointers to the two faces and
the two vertices adjacent to the edge, represented
respectively as Face0, Face1, Vertex0, Vertex1 in the
diagram. The other pointers are references to the WE
which are adjacent to this WE．Wcw0 and Wccw0 are
the Wes adjacent to this WE in a clockwise and
counter-clockwise order along Face0. Similarly,

– 40 – – 41 –

The 3rd International Conference on Design Engineering and Science, ICDES 2014
Pilsen, Czech Republic, August 31 – September 3, 2014

