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Abstract

With the current trend of globalization, product design
and development is often conducted collaboratively
among several divisions, thus making it a huge
challenge to transfer large CAE (Computer Aided
Engineering) data between different locations. In this
study, we have developed a data compression method
based on TD (Tensor Decomposition). In this method,
voxel simulation results data are represented as tensors
and a tensor decomposition algorithm based on HOOI
(Higher-Order Orthogonal Iteration) algorithm is
applied to the tensors. After tensor decompression, the
original tensor is decomposed into a core tensor and a
series of basis matrices, whose summed size is
considerably smaller than that of the original tensor. As
a result, a compression ratio of over 60:1 is achieved for
steady flow simulation results data and the error is
below 5%. A compression ratio of over 70:1 is achieved
for unsteady flow simulation results data and the error is
below 5%. We have confirmed that at 5% error, no
significant information is lost during the data
compression process.
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1 Introduction

Nowadays, CAE has become an indispensible tool
for industrial product design and development. One of
the trends with recent CAE is that models have become
increasingly large-scaled. This is partly due to the
increase in the functionality and complexity of products.
The advancement in HPC (High Performance
Computing) has made it possible to run large-scaled
calculations in reasonably short time, which results in
very large CAE results database. Meanwhile, in
distributed computational environments such as the
cloud systems, it is often necessary to transfer CAE
results to client PCs for post-processing and/or
visualization [1]. Since product design and development
requires a speedy processing of CAE results data, it is
important to reduce the data transfer time. To achieve
this, it is important to compress the size of CAE results
data before data transfer.

Besides the traditional mesh-based simulation,
voxel —based simulation is often used to simulate actual
industrial products due to the simplicity and robustness
of grid generation [2], [3], [4]. In voxel simulations, the
simulation models tend to be huge because of the fact
that the voxel grids have to be divided at a high
resolution to ensure precision [2]. Therefore, it is even
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more important to compress the voxel-based simulation
results when transferring the database.

Data compression has long been studied in
data-intensive  disciplines such as image/video
processing, signal processing, bioinformatics, efc.
However, there were only few studies in the
compression of CAE results data. In one of the studies,
EZT (Embedded Zero-Tree) wavelet encoding method
has been used to compress BCM (Building-Cube
Method)-based CFD results data [5]. In another study,
SVD (Singular Value Decomposition) method has been
applied to particle simulation data [6]. Recently, high
order SVD has been used to compress CFD results of
the outer flow around a wing with hexahedral mesh [7].

Tensor decomposition, or tensor factorization, is
the expansion of SVD to higher-dimensional arrays. In
tensor decomposition, the original tensor is decomposed
into a core tensor and several basis matrices whose total
number is equal to the dimension of the input tensor
[8][9][10]. Figure 1 illustrates the image of tensor

decomposition.
T
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Fig. 1 An illustration of tensor decomposition

Basis matrix

Tensor decomposition has been applied for image
data compression [11], dimensionality reduction [12],
and more recently for the compression of hexahedral
mesh-based simulation result database [7]. However, to
the best of our knowledge, there has been no application
of tensor decomposition to the data compression of
voxel-based simulation results.

In this study, we propose a data compression
method for voxel simulation results based on tensor
decomposition.

2 Tensor decomposition
2.1 Data representation using tensors

Simulation results data tend to be high-dimensional
due to the fact that they have various design parameters
and contain multiple physical quantities. Traditional



data compression methods such as SVD map the data
into 2D plane and represent them as matrices [6]. It is
obvious that the intrinsic correlation between
dimensions will be lost during the mapping process.
Therefore, we choose to use high-dimensional arrays, or
tensors, to represent simulation results data. This way,
the correlation between dimensions is preserved and
high compression ratio can be expected by removing the
redundancies in the data.

2.2 Tensor decomposition

Tensor decomposition can be formulated as an
optimization problem of minimizing the distance
between an input tensor and its approximate tensor of a
lower rank. Mathematically, it is written as Eq. (1).
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where 4 is the N"-order input tensor consisting of
real numbers. J; is the rank of the i-mode.

Two popular tensor decomposition schemes are CP
decomposition, where the core tensor is diagonal [13],
and Tucker decomposition, where the core tensor is
dense [14][15]. In this research, we use Tucker
decomposition due to its flexibility in controlling the
approximated tensor through adjusting the size of the
core tensor. In Tucker decomposition, the approximated
tensor 4 is decomposed as shown in Eq. (2).

A=Bx, U0 x, U, UN @)

where @B is the core tensor and Be Ry U
is the basis matrix and U"” e R/,

In this research, we adopt the HOOI (Higher-Order
Orthogonal Iteration) tensor decomposition algorithm
proposed by Lathauwer ez. al. [16][17]. Using HOOI,
the core tensor B is calculated using the following
equation.

B=Ax, U’ x, U(Z)T"'XN um’ 3)

The basis matrix U is calculated using an ALS
(Alternating Least Squares) method which is an
expansion of the Least Squares method. The initial basis
matrices are calculated using the HOSVD algorithm
[16]. That is to say, y,”is calculated as the left
singular vector of the i/ mode expansion of 1.

2.3 Tensor-decomposition-based data compression

One important property of tensor decomposition is
that the overall size of the core tensor and basis matrices
is usually much smaller than that of the original tensor.
We take advantage of this property and use tensor
decomposition for lossy data compression.

Compression ratio is defined as the number of
elements before and after tensor decomposition.
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The approximation error caused by tensor
decomposition is defined as follows.
A-A
worstz =P o ®
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where NORME is the approximation error based on the
Frobenius norm.

3 Test results
3.1 Test model

Figure 2 shows the voxel simulation model used for
testing. In voxel simulation, the 3D simulation volume
is automatically divided into orthogonal grids and then
thermal or fluid simulations are performed. Our model
is a simplified inverter model, which consists of fan unit,
bus bar, resistors, efc. Thermal and fluid simulations are
performed in the 3D volume containing these parts. The
fan unit is regarded as fluid since it is the duct for air
flow. The number of cross sections along the Z-axis is
251 and the number of voxels in the X and Y axes are
156 and 125, respectively. Therefore, the total number
of voxels in the test model is 251*156*125=4,894,500.
We performed simulation of air flow using in-house
voxel simulation software and obtained results for eight
physical quantities. Table 1 shows a list of physical
quantities of the test model.

Resistor
(Solid)

Evaluated cross
section in Fig. 7

Fan
(Air flow)

Bus bar z
(Solid)
X Frame
Fan casing (Solid)
(Solid) X
Added part for

simulation (Air flow)

Fig. 2 Test model

Table 1 List of physical quantities of the test model

Physical quantity Symbol Unit
Humidity h %
Mass flow rate m Kg/s
Density 0 Kg/m3
Pressure P Pa
Temperature T K
Velocity component x u m/s
Velocity component y v m/s
Velocity component z w m/s




To test data compression of 4"-dimensional
simulation data, we also perform unsteady flow
simulation for 10 time steps.

All calculations are performed on an HP Z800 PC
with CPU of Intel Xeon W5590 @ 3.33 GHz and 32GB
physical memory.

3.2 Test results

First, we represent simulation results of one time step
with a 3"-order tensor and then perform tensor
decomposition. The three dimensions of the 3"-order
tensor correspond to the X, Y and Z axes of the voxel
model. For comparison, we also expand the input
simulation results data to 2D matrix and perform SVD.
Figure 3 shows a comparison between TD and SVD in
terms of compression ratio and approximation error. The
X-axis is compression ratio and log scale is used. It is
obvious that, at any error level, TD has higher
compression ratios than those of SVD. For example,
when approximation error is 5%, the compression ratio
for SVD is about 5.4, while for TD is about 60.0, which
is about 11 times over that of SVD.
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Fig. 3 Comparison between TD and SVD (3"9-order)

Next, we represent the 10-step time series of voxel
simulation results with a 4%-order tensor and then
perform tensor decomposition to compress the data. The
four dimensions of the 4®-order tensor correspond to the
X, Y, Z axes and t (time) of the voxel model. Figure 4
shows a comparison between TD and SVD in terms of
compression ratio and approximation error. The X-axis
is compression ratio and log scale is used. Similar with
the results of the 3™-order tensor, when error level is the
same, TD gains higher compression ratios than SVD
does. For example, when error is 5%, the compression
ratio for SVD is about 4.0, while for TD it is about 70.0,
which is about 17 times over that of the SVD.
Comparing with the results of 3™-order tensor, the
compression ratio for 4"-order tensor is higher than that
of the 3“-order tensor, which suggests that TD is
suitable for the compression of large-scale and
high-dimensional database.

—49_

50%

45% —e-HOOI (Tensor)

——SVD

40%

35%

30%

25%

Error

20%

15%

10%

5% g

f'"

-

asees® 70
10 100

0%

4 1000 10000

Compression Ratio

Fig. 4 Comparison between TD and SVD (4""-order)

3.3 Computational time

Figure 5 shows the comparison of computational
time between TD and SVD in terms of compression
ratio.
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As shown in Figure 5, the computational time of TD
is about an order greater than that of SVD, which is due
to the complexity of the HOOI algorithm. The HOOI
algorithm requires SVD to be calculated in each mode
and iterates until the ALS algorithm converges [17].

It can also be seen from Figure 5 that TD and SVD
operate at different zones. TD is more time-consuming,
but the compression ratio is much higher than that of the
SVD. However, it is not sufficient to look at the
compression ratio alone, because there is a tradeoff
between the compression ratio and approximation error.

Figure 6 shows a comparison of computational time
between TD and SVD in terms of approximation error.
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Fig. 6 Comparison of CPU time in terms of error

It can be seen from Figure 6 that the computational
time for TD is considerably greater than that for SVD.
When the approximation error is 5%, the computational
time for TD is about 25s, while for SVD it is about 5s. It
should be noted that when the compression error is the
same, the compression ratio with TD is much greater
than that of SVD, as shown in Figure 3 and Figure 4.
We conclude that there is a tradeoff between the
performance and computational time.

4 Discussion

To further investigate the information loss caused
by data compression, we compare the data before and
after compression by visualizing the data. Figure 7
shows the pressure distributions in the cross section of
the air flow inside the fan unit. The core sizes,
compression ratio and error are listed in Table 2. It can
be seen from Fig. 7 and Table 2 that, with the increase
in core tensor size, the pressure distribution in the cross
section gradually approximates that of the original data.
When the approximation error is 10.7%, the overall
feature of the pressure distribution is captured, but there
are still noticeable differences in the color tone and
some other details. Meanwhile, when the approximation
error is decreased to 4.8%, there is no noticeable
difference between the compressed data and the original
data, which suggests that the compressed data can be
used for further analysis or design.

We also compare the data before and after data
compression of the unsteady flow simulation results.
Figure 8 shows pressure distributions in the cross
section of the air flow inside the fan unit, which is the
same cross section as used in Figure 7. In Figure 8, the
n row corresponds to the simulation results of the n'"
time step, where n is a number between one and ten.
The first column is the original data without data
compression. The second column is the data after data
compression with TD with a compression ratio of 3174.
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Fig. 7 Comparison of cross sections

Table 2 List of physical quantities of the test model

Data Core size | CF | Error
(A) Original data
(B) 40740740 | 57 4.8%
© 20*20*20 263 10.7%

The third column is the data after data compression with
TD with a compression ratio of 52. The fourth column is
the data after data compression with SVD with a
compression ratio of 10. It can be observed from Figure
8 that, at compression ratio 52, the compressed data
from TD yields almost the same pressure distributions
as those from the original data. Meanwhile, for the
compressed data from SVD, even at compression ratio
10, there are considerable differences between the
compressed data and the original data. Even though the
overall pressure distributions look similar, the data
compressed from SVD lose many of the detailed
characteristics in the pressure distribution. Therefore, it
is confirmed that data compression using TD
outperforms data compression using SVD.



Fig. 8 Comparison of data compression results for
unsteady flow simulation results data

Column 1: Original data;

Column 2: TD compressed data, CF=3174;

Column 3: TD compressed data, CF=52;

Column 4: SVD compressed data, CF=10.

5 Conclusions

We propose a data compression method for
simulation results database using tensor decomposition.
We test the method in a simplified inverter model and
obtain the following conclusions.

(1) We represent single voxel simulation results
data with 3"-order tensor and decompose it. As a result,
we obtain a compression ratio of 1:60 while the
approximation error is about 5%. Compared with
traditional method in which the compression ratio is
about 5.4, the compression ratio of our method is more
than 10 times higher.

(2) We represent a time-series of voxel simulation
results data with 4"-order tensor and decompose it. As a
result, we obtain a compression ratio of 1:70 while the
approximation error is 5%. The proposed method is over
17 times higher in terms of compression ratio as
compared with traditional method in which the value is
about 1:4.
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(3) Computation time for TD is greater than that
for SVD. There is a tradeoff between performance and
computational time.
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