
5 Applications  
5.1 Duality in primitive solid models  

Most solid modelers provide some primitive solid 
models which can be created by specifying a small 
number of parameters.  These primitive solids are 
modified and combined to obtain the intended model.  
Solid models created using the data structure and the 
Euler operators in the previous sections can be 
interpreted as two different solids.  Therefore, each 
function for crating primitive solid models can be used 
for a pair of two different solids as can be seen in Fig. 
16.  

Fig. 16 Dual Shapes created by shared source code  
 

5.2 Application to non-manifold solid models  
Many methods have been proposed for the 

boundary representations of non-manifold solid models.  
The conventional manifold solid models do not 
necessarily require complete symmetry between faces 
and vertices.  However, in a non-manifold modeler, the 
principle of duality can serve as a criteria for checking if 
the representation has sufficient capabilities.  Research 
concerning non-manifold representations is often based 
on an extension of the Winged-edge or half-edge 
structure.  The quarter-edge structure has the most 
powerful specification capabilities of any of the edge 
based data structures in that the quarter-edge can be 
used to distinguish between face adjacency and vertex 
adjacency.  

 
6 Conclusions  

The quarter-edge data structure has been proposed 
as a method of realizing the principle of duality in solid 
model representations.  A symmetrical data structure 
combined with quarter-edge is necessary to implement 
Euler operators which can be used for dual operations.  
The quarter-edge representation is powerful in that face 
adjacency and vertex adjacency can be distinguished.   

A simple solid modeling system with a set of dual 
Euler operators was implemented using this data 
structure.  The data structure and Euler operators were 
used in much the same fashion as conventional ones.  
Although a quantitative comparison cannot be presented, 
the new representation and Euler operators are more 
theoretically sound and is more suitable for extension to 
non-manifold solid models. 
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Abstract 

With the current trend of globalization, product design 
and development is often conducted collaboratively 
among several divisions, thus making it a huge 
challenge to transfer large CAE (Computer Aided 
Engineering) data between different locations. In this 
study, we have developed a data compression method 
based on TD (Tensor Decomposition). In this method, 
voxel simulation results data are represented as tensors 
and a tensor decomposition algorithm based on HOOI 
(Higher-Order Orthogonal Iteration) algorithm is 
applied to the tensors. After tensor decompression, the 
original tensor is decomposed into a core tensor and a 
series of basis matrices, whose summed size is 
considerably smaller than that of the original tensor. As 
a result, a compression ratio of over 60:1 is achieved for 
steady flow simulation results data and the error is 
below 5%. A compression ratio of over 70:1 is achieved 
for unsteady flow simulation results data and the error is 
below 5%. We have confirmed that at 5% error, no 
significant information is lost during the data 
compression process. 
Keywords: CAE, product design, simulation, tensor 
decomposition, data compression 
 

1 Introduction 
Nowadays, CAE has become an indispensible tool 

for industrial product design and development. One of 
the trends with recent CAE is that models have become 
increasingly large-scaled. This is partly due to the 
increase in the functionality and complexity of products. 
The advancement in HPC (High Performance 
Computing) has made it possible to run large-scaled 
calculations in reasonably short time, which results in 
very large CAE results database. Meanwhile, in 
distributed computational environments such as the 
cloud systems, it is often necessary to transfer CAE 
results to client PCs for post-processing and/or 
visualization [1]. Since product design and development 
requires a speedy processing of CAE results data, it is 
important to reduce the data transfer time. To achieve 
this, it is important to compress the size of CAE results 
data before data transfer. 

Besides the traditional mesh-based simulation, 
voxel –based simulation is often used to simulate actual 
industrial products due to the simplicity and robustness 
of grid generation [2], [3], [4]. In voxel simulations, the 
simulation models tend to be huge because of the fact 
that the voxel grids have to be divided at a high 
resolution to ensure precision [2]. Therefore, it is even 

more important to compress the voxel-based simulation 
results when transferring the database. 

Data compression has long been studied in 
data-intensive disciplines such as image/video 
processing, signal processing, bioinformatics, etc. 
However, there were only few studies in the 
compression of CAE results data. In one of the studies, 
EZT (Embedded Zero-Tree) wavelet encoding method 
has been used to compress BCM (Building-Cube 
Method)-based CFD results data [5]. In another study, 
SVD (Singular Value Decomposition) method has been 
applied to particle simulation data [6]. Recently, high 
order SVD has been used to compress CFD results of 
the outer flow around a wing with hexahedral mesh [7]. 

Tensor decomposition, or tensor factorization, is 
the expansion of SVD to higher-dimensional arrays. In 
tensor decomposition, the original tensor is decomposed 
into a core tensor and several basis matrices whose total 
number is equal to the dimension of the input tensor 
[8][9][10]. Figure 1 illustrates the image of tensor 
decomposition. 

 

Fig. 1 An illustration of tensor decomposition 
 
Tensor decomposition has been applied for image 

data compression [11], dimensionality reduction [12], 
and more recently for the compression of hexahedral 
mesh-based simulation result database [7]. However, to 
the best of our knowledge, there has been no application 
of tensor decomposition to the data compression of 
voxel-based simulation results.  

In this study, we propose a data compression 
method for voxel simulation results based on tensor 
decomposition. 

 
2 Tensor decomposition 

2.1 Data representation using tensors 
  Simulation results data tend to be high-dimensional 
due to the fact that they have various design parameters 
and contain multiple physical quantities. Traditional 
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data compression methods such as SVD map the data 
into 2D plane and represent them as matrices [6]. It is 
obvious that the intrinsic correlation between 
dimensions will be lost during the mapping process. 
Therefore, we choose to use high-dimensional arrays, or 
tensors, to represent simulation results data. This way, 
the correlation between dimensions is preserved and 
high compression ratio can be expected by removing the 
redundancies in the data. 

2.2 Tensor decomposition 
Tensor decomposition can be formulated as an 

optimization problem of minimizing the distance 
between an input tensor and its approximate tensor of a 
lower rank. Mathematically, it is written as Eq. (1). 
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where A  is the Nth-order input tensor consisting of 
real numbers. Ji is the rank of the ith-mode. 
  Two popular tensor decomposition schemes are CP 
decomposition, where the core tensor is diagonal [13], 
and Tucker decomposition, where the core tensor is 
dense [14][15]. In this research, we use Tucker 
decomposition due to its flexibility in controlling the 
approximated tensor through adjusting the size of the 
core tensor. In Tucker decomposition, the approximated 
tensor Â  is decomposed as shown in Eq. (2). 
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is the basis matrix and ii JIi )(U . 

In this research, we adopt the HOOI (Higher-Order 
Orthogonal Iteration) tensor decomposition algorithm 
proposed by Lathauwer et. al. [16][17]. Using HOOI, 
the core tensor B  is calculated using the following 
equation. 
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The basis matrix U  is calculated using an ALS 
(Alternating Least Squares) method which is an 
expansion of the Least Squares method. The initial basis 
matrices are calculated using the HOSVD algorithm 
[16]. That is to say, )(

0
iU is calculated as the left 

singular vector of the ith mode expansion of A . 

2.3 Tensor-decomposition-based data compression 
  One important property of tensor decomposition is 
that the overall size of the core tensor and basis matrices 
is usually much smaller than that of the original tensor. 
We take advantage of this property and use tensor 
decomposition for lossy data compression. 
  Compression ratio is defined as the number of 
elements before and after tensor decomposition. 
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  The approximation error caused by tensor 
decomposition is defined as follows. 
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where NORME is the approximation error based on the 
Frobenius norm. 
 

3 Test results 
3.1 Test model 
  Figure 2 shows the voxel simulation model used for 
testing. In voxel simulation, the 3D simulation volume 
is automatically divided into orthogonal grids and then 
thermal or fluid simulations are performed. Our model 
is a simplified inverter model, which consists of fan unit, 
bus bar, resistors, etc. Thermal and fluid simulations are 
performed in the 3D volume containing these parts. The 
fan unit is regarded as fluid since it is the duct for air 
flow. The number of cross sections along the Z-axis is 
251 and the number of voxels in the X and Y axes are 
156 and 125, respectively. Therefore, the total number 
of voxels in the test model is 251*156*125=4,894,500. 
We performed simulation of air flow using in-house 
voxel simulation software and obtained results for eight 
physical quantities. Table 1 shows a list of physical 
quantities of the test model. 

Resistor 
(Solid)

Bus bar
(Solid)

Fan
(Air flow)

Evaluated cross 
section in Fig. 7

Fan casing
(Solid)

Frame
(Solid)

Added part for 
simulation (Air flow)  

Fig. 2 Test model 
 

Table 1 List of physical quantities of the test model 

Physical quantity Symbol Unit 
Humidity h % 
Mass flow rate m Kg/s 
Density o Kg/m3 
Pressure P Pa 
Temperature T K 
Velocity component x u m/s 
Velocity component y v m/s 
Velocity component z w m/s 

 
 
  To test data compression of 4th–dimensional 
simulation data, we also perform unsteady flow 
simulation for 10 time steps. 
  All calculations are performed on an HP Z800 PC 
with CPU of Intel Xeon W5590 @ 3.33 GHz and 32GB 
physical memory. 
 

3.2 Test results 
  First, we represent simulation results of one time step 
with a 3rd-order tensor and then perform tensor 
decomposition. The three dimensions of the 3rd-order 
tensor correspond to the X, Y and Z axes of the voxel 
model. For comparison, we also expand the input 
simulation results data to 2D matrix and perform SVD. 
Figure 3 shows a comparison between TD and SVD in 
terms of compression ratio and approximation error. The 
X-axis is compression ratio and log scale is used. It is 
obvious that, at any error level, TD has higher 
compression ratios than those of SVD. For example, 
when approximation error is 5%, the compression ratio 
for SVD is about 5.4, while for TD is about 60.0, which 
is about 11 times over that of SVD. 

605.4

 

Fig. 3 Comparison between TD and SVD (3rd-order) 
 

Next, we represent the 10-step time series of voxel 
simulation results with a 4th-order tensor and then 
perform tensor decomposition to compress the data. The 
four dimensions of the 4th-order tensor correspond to the 
X, Y, Z axes and t (time) of the voxel model. Figure 4 
shows a comparison between TD and SVD in terms of 
compression ratio and approximation error. The X-axis 
is compression ratio and log scale is used. Similar with 
the results of the 3rd-order tensor, when error level is the 
same, TD gains higher compression ratios than SVD 
does. For example, when error is 5%, the compression 
ratio for SVD is about 4.0, while for TD it is about 70.0, 
which is about 17 times over that of the SVD. 
Comparing with the results of 3rd-order tensor, the 
compression ratio for 4th-order tensor is higher than that 
of the 3rd-order tensor, which suggests that TD is 
suitable for the compression of large-scale and 
high-dimensional database. 
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Fig. 4 Comparison between TD and SVD (4th-order) 
 
3.3 Computational time 
  Figure 5 shows the comparison of computational 
time between TD and SVD in terms of compression 
ratio. 
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Fig. 5 Comparison of CPU time in terms of CR 
 

  As shown in Figure 5, the computational time of TD 
is about an order greater than that of SVD, which is due 
to the complexity of the HOOI algorithm. The HOOI 
algorithm requires SVD to be calculated in each mode 
and iterates until the ALS algorithm converges [17]. 
  It can also be seen from Figure 5 that TD and SVD 
operate at different zones. TD is more time-consuming, 
but the compression ratio is much higher than that of the 
SVD. However, it is not sufficient to look at the 
compression ratio alone, because there is a tradeoff 
between the compression ratio and approximation error. 
  Figure 6 shows a comparison of computational time 
between TD and SVD in terms of approximation error.  
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where A  is the Nth-order input tensor consisting of 
real numbers. Ji is the rank of the ith-mode. 
  Two popular tensor decomposition schemes are CP 
decomposition, where the core tensor is diagonal [13], 
and Tucker decomposition, where the core tensor is 
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2.3 Tensor-decomposition-based data compression 
  One important property of tensor decomposition is 
that the overall size of the core tensor and basis matrices 
is usually much smaller than that of the original tensor. 
We take advantage of this property and use tensor 
decomposition for lossy data compression. 
  Compression ratio is defined as the number of 
elements before and after tensor decomposition. 
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  The approximation error caused by tensor 
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3 Test results 
3.1 Test model 
  Figure 2 shows the voxel simulation model used for 
testing. In voxel simulation, the 3D simulation volume 
is automatically divided into orthogonal grids and then 
thermal or fluid simulations are performed. Our model 
is a simplified inverter model, which consists of fan unit, 
bus bar, resistors, etc. Thermal and fluid simulations are 
performed in the 3D volume containing these parts. The 
fan unit is regarded as fluid since it is the duct for air 
flow. The number of cross sections along the Z-axis is 
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Table 1 List of physical quantities of the test model 
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  To test data compression of 4th–dimensional 
simulation data, we also perform unsteady flow 
simulation for 10 time steps. 
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simulation results data to 2D matrix and perform SVD. 
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terms of compression ratio and approximation error. The 
X-axis is compression ratio and log scale is used. It is 
obvious that, at any error level, TD has higher 
compression ratios than those of SVD. For example, 
when approximation error is 5%, the compression ratio 
for SVD is about 5.4, while for TD is about 60.0, which 
is about 11 times over that of SVD. 
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Fig. 3 Comparison between TD and SVD (3rd-order) 
 

Next, we represent the 10-step time series of voxel 
simulation results with a 4th-order tensor and then 
perform tensor decomposition to compress the data. The 
four dimensions of the 4th-order tensor correspond to the 
X, Y, Z axes and t (time) of the voxel model. Figure 4 
shows a comparison between TD and SVD in terms of 
compression ratio and approximation error. The X-axis 
is compression ratio and log scale is used. Similar with 
the results of the 3rd-order tensor, when error level is the 
same, TD gains higher compression ratios than SVD 
does. For example, when error is 5%, the compression 
ratio for SVD is about 4.0, while for TD it is about 70.0, 
which is about 17 times over that of the SVD. 
Comparing with the results of 3rd-order tensor, the 
compression ratio for 4th-order tensor is higher than that 
of the 3rd-order tensor, which suggests that TD is 
suitable for the compression of large-scale and 
high-dimensional database. 
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Fig. 4 Comparison between TD and SVD (4th-order) 
 
3.3 Computational time 
  Figure 5 shows the comparison of computational 
time between TD and SVD in terms of compression 
ratio. 
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Fig. 5 Comparison of CPU time in terms of CR 
 

  As shown in Figure 5, the computational time of TD 
is about an order greater than that of SVD, which is due 
to the complexity of the HOOI algorithm. The HOOI 
algorithm requires SVD to be calculated in each mode 
and iterates until the ALS algorithm converges [17]. 
  It can also be seen from Figure 5 that TD and SVD 
operate at different zones. TD is more time-consuming, 
but the compression ratio is much higher than that of the 
SVD. However, it is not sufficient to look at the 
compression ratio alone, because there is a tradeoff 
between the compression ratio and approximation error. 
  Figure 6 shows a comparison of computational time 
between TD and SVD in terms of approximation error.  
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Fig. 6 Comparison of CPU time in terms of error 
 

It can be seen from Figure 6 that the computational 
time for TD is considerably greater than that for SVD. 
When the approximation error is 5%, the computational 
time for TD is about 25s, while for SVD it is about 5s. It 
should be noted that when the compression error is the 
same, the compression ratio with TD is much greater 
than that of SVD, as shown in Figure 3 and Figure 4. 
We conclude that there is a tradeoff between the 
performance and computational time. 
 

4 Discussion 
To further investigate the information loss caused 

by data compression, we compare the data before and 
after compression by visualizing the data. Figure 7 
shows the pressure distributions in the cross section of 
the air flow inside the fan unit. The core sizes, 
compression ratio and error are listed in Table 2. It can 
be seen from Fig. 7 and Table 2 that, with the increase 
in core tensor size, the pressure distribution in the cross 
section gradually approximates that of the original data. 
When the approximation error is 10.7%, the overall 
feature of the pressure distribution is captured, but there 
are still noticeable differences in the color tone and 
some other details. Meanwhile, when the approximation 
error is decreased to 4.8%, there is no noticeable 
difference between the compressed data and the original 
data, which suggests that the compressed data can be 
used for further analysis or design. 

We also compare the data before and after data 
compression of the unsteady flow simulation results. 
Figure 8 shows pressure distributions in the cross 
section of the air flow inside the fan unit, which is the 
same cross section as used in Figure 7. In Figure 8, the 
nth row corresponds to the simulation results of the nth 
time step, where n is a number between one and ten. 
The first column is the original data without data 
compression. The second column is the data after data 
compression with TD with a compression ratio of 3174. 

 
(A) 

 
(B) 

 
(C) 

Fig. 7 Comparison of cross sections 
 

Table 2 List of physical quantities of the test model 

Data Core size CF Error 
(A) Original data 
(B) 40*40*40 57 4.8% 
(C) 20*20*20 263 10.7% 

 
The third column is the data after data compression with 
TD with a compression ratio of 52. The fourth column is 
the data after data compression with SVD with a 
compression ratio of 10. It can be observed from Figure 
8 that, at compression ratio 52, the compressed data 
from TD yields almost the same pressure distributions 
as those from the original data. Meanwhile, for the 
compressed data from SVD, even at compression ratio 
10, there are considerable differences between the 
compressed data and the original data. Even though the 
overall pressure distributions look similar, the data 
compressed from SVD lose many of the detailed 
characteristics in the pressure distribution. Therefore, it 
is confirmed that data compression using TD 
outperforms data compression using SVD. 
 

Fan (Air flow) 

Fan casing 

Frame 

 
 

Fig. 8 Comparison of data compression results for 
unsteady flow simulation results data  

Column 1: Original data;  
Column 2: TD compressed data, CF=3174;  
Column 3: TD compressed data, CF=52;  
Column 4: SVD compressed data, CF=10. 

 
5 Conclusions 

We propose a data compression method for 
simulation results database using tensor decomposition. 
We test the method in a simplified inverter model and 
obtain the following conclusions. 

(1) We represent single voxel simulation results 
data with 3rd-order tensor and decompose it. As a result, 
we obtain a compression ratio of 1:60 while the 
approximation error is about 5%. Compared with 
traditional method in which the compression ratio is 
about 5.4, the compression ratio of our method is more 
than 10 times higher. 

(2) We represent a time-series of voxel simulation 
results data with 4th-order tensor and decompose it. As a 
result, we obtain a compression ratio of 1:70 while the 
approximation error is 5%. The proposed method is over 
17 times higher in terms of compression ratio as 
compared with traditional method in which the value is 
about 1:4. 

(3) Computation time for TD is greater than that 
for SVD. There is a tradeoff between performance and 
computational time. 
 

 References 
 
[1] Matsuoka, D. and Araki, F., “Survey on Scientific 

Data Visualization for Large-scale Simulations”, 
JAMSTEC Report of Research and Development, 
Vol. 13, (2011), pp. 35-63. (in Japanese) 

[2] Tawara, T. and Ono, K., “Fast large scale 
voxelization using a pedigree”, the 10th ISGG 
Conference on Numerical Grid Generation, Sep. 
16-20, Forth, Crete, Greece, (2007). 

[3] Ikegawa, M., Mukai, H., and Watanabe, M., 
“Airflow-simulation by voxel mesh method for 
complete hard disk drive structure”, IEEE Trans. 
Magn. Vol. 45, No. 11, (2009), pp. 4918-4922. 

[4] Hayashi, S., Watanabe, M., Iwase, Y., Kanno, K., 
and Fujimori, K., “Development of a household 
vacuum cleaner with a new cyclone dust collector”, 
FEDSM2007-37014, (2007), pp. 1925-1932. 

[5] Sakai, R., Sasaki, D., Obayashi, S. and Nakahashi, 
K., “Wavelet-based data compression for flow 
simulation on block-structured Cartesian mesh”, 
International Journal for Numerical Methods in 
Fluids. Vol. 73, Issue 5, (2013), pp. 462–476. 

[6] Wada, K. and Iwasaki, K., “Compression of 
Particle-based Fluid Simulation Data”, Information 
Processing Society of Japan, Kansai Branch, (2011). 
(in Japanese) 

[7] Lorente, L. S., Vega, J. M. and Velazquez, A., 
“Compression of aerodynamic databases using 
high-order singular value decomposition”, 
Aerospace Science and Technology, Vol. 14, No. 3, 
(2010), pp. 168-177. 

[8] Kolda, T. G. and Blder, B. W., “Tensor 
decomposition and applications”, SIAM Review, Vol. 
51, No. 3, (2009), pp. 455-500. 

[9] Acar E. and Yener B., “Unsupervised multiway data 
analysis: a literature survey”, IEEE Transactions on 
knowledge and data engineering”, Vol. 21, No. 1, 
(2009), pp. 6-20. 

[10] Qi, L., Sun, W., and Wang, Y., “Numerical 
multilinear algebra and its applications”, Front. 
Math. China, Vol. 2, No. 4, (2007), pp. 501-526. 

[11] D. Vlasic, M. Brand, H. Pfister, and J. Popovic, 
“Face transfer with multilinear models”, ACM Trans. 
Graphics, Vol. 24 (2005), pp. 426-433. 

[12] Wang, H. and Ahuja, N., “A tensor approximation 
approach to dimensionality reduction”, Int J Comput 
Vis, Vol. 76, (2008), pp. 217-229. 

[13] R.A. Harshman, “Foundations of the PARAFAC 
procedure: Models and conditions for an explanatory 
multi-modal factor analysis”, UCLA Working Papers 
in Phonetics, Vol. 16 (1970), pp. 1-84. 

[14] L.R. Tucker: The extension of factor analysis to 
three-dimensional matrices, in Contributions to 
Mathematical Psychology, H. Gulliksen and N. 
Frederiksen, eds., Holt, Rinehart & Winston, New 
York, (1964), pp. 109-127. 

[15] L.R. Tucker: Some Mathematical Notes on 
Three-Mode Factor Analysis. Psychometrika, Vol.31, 

– 50 – – 51 – 



 
 

 

0

10

20

30

40

50

60

0% 5% 10% 15% 20% 25%

CP
U 

tim
e 

(s
)

Error

TD
SVD

C
PU

 T
im

e 
(s

)

Error  
 

Fig. 6 Comparison of CPU time in terms of error 
 

It can be seen from Figure 6 that the computational 
time for TD is considerably greater than that for SVD. 
When the approximation error is 5%, the computational 
time for TD is about 25s, while for SVD it is about 5s. It 
should be noted that when the compression error is the 
same, the compression ratio with TD is much greater 
than that of SVD, as shown in Figure 3 and Figure 4. 
We conclude that there is a tradeoff between the 
performance and computational time. 
 

4 Discussion 
To further investigate the information loss caused 

by data compression, we compare the data before and 
after compression by visualizing the data. Figure 7 
shows the pressure distributions in the cross section of 
the air flow inside the fan unit. The core sizes, 
compression ratio and error are listed in Table 2. It can 
be seen from Fig. 7 and Table 2 that, with the increase 
in core tensor size, the pressure distribution in the cross 
section gradually approximates that of the original data. 
When the approximation error is 10.7%, the overall 
feature of the pressure distribution is captured, but there 
are still noticeable differences in the color tone and 
some other details. Meanwhile, when the approximation 
error is decreased to 4.8%, there is no noticeable 
difference between the compressed data and the original 
data, which suggests that the compressed data can be 
used for further analysis or design. 

We also compare the data before and after data 
compression of the unsteady flow simulation results. 
Figure 8 shows pressure distributions in the cross 
section of the air flow inside the fan unit, which is the 
same cross section as used in Figure 7. In Figure 8, the 
nth row corresponds to the simulation results of the nth 
time step, where n is a number between one and ten. 
The first column is the original data without data 
compression. The second column is the data after data 
compression with TD with a compression ratio of 3174. 
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(B) 

 
(C) 

Fig. 7 Comparison of cross sections 
 

Table 2 List of physical quantities of the test model 

Data Core size CF Error 
(A) Original data 
(B) 40*40*40 57 4.8% 
(C) 20*20*20 263 10.7% 

 
The third column is the data after data compression with 
TD with a compression ratio of 52. The fourth column is 
the data after data compression with SVD with a 
compression ratio of 10. It can be observed from Figure 
8 that, at compression ratio 52, the compressed data 
from TD yields almost the same pressure distributions 
as those from the original data. Meanwhile, for the 
compressed data from SVD, even at compression ratio 
10, there are considerable differences between the 
compressed data and the original data. Even though the 
overall pressure distributions look similar, the data 
compressed from SVD lose many of the detailed 
characteristics in the pressure distribution. Therefore, it 
is confirmed that data compression using TD 
outperforms data compression using SVD. 
 

Fan (Air flow) 

Fan casing 

Frame 

 
 

Fig. 8 Comparison of data compression results for 
unsteady flow simulation results data  

Column 1: Original data;  
Column 2: TD compressed data, CF=3174;  
Column 3: TD compressed data, CF=52;  
Column 4: SVD compressed data, CF=10. 

 
5 Conclusions 

We propose a data compression method for 
simulation results database using tensor decomposition. 
We test the method in a simplified inverter model and 
obtain the following conclusions. 

(1) We represent single voxel simulation results 
data with 3rd-order tensor and decompose it. As a result, 
we obtain a compression ratio of 1:60 while the 
approximation error is about 5%. Compared with 
traditional method in which the compression ratio is 
about 5.4, the compression ratio of our method is more 
than 10 times higher. 

(2) We represent a time-series of voxel simulation 
results data with 4th-order tensor and decompose it. As a 
result, we obtain a compression ratio of 1:70 while the 
approximation error is 5%. The proposed method is over 
17 times higher in terms of compression ratio as 
compared with traditional method in which the value is 
about 1:4. 

(3) Computation time for TD is greater than that 
for SVD. There is a tradeoff between performance and 
computational time. 
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Abstract 

Calculating model on static and dynamic characteristics 
of the elastic body of a wrist force sensor used in space 
robot is built with finite element method. The stress 
distribution pattern for various load cases, natural 
frequencies and vibration shapes of the elastic body are 
analyzed. The influence of main structure parameters on 
static and dynamic characteristics is investigated 
comprehensively by using orthogonal test design. The 
regression equations between the structure parameters 
and performances of the sensor are obtained by using 
step regression analysis based on numerical results. And 
the optimization design of elastic body for the wrist 
force sensor is put into implementation.  
Keywords: Wrist force sensor, finite element analysis, 
orthogonal test design, optimization design  
 

1 Introduction 
A six-axis wrist force sensor can detect all force 

information in three-dimensional space simultaneously, 
and it is one of the most important sensors for force 
control and force/displacement control in robot [1], [6]. 
As piezoelectric component can't measure static loading 
and is not applicable to robot, the wrist force sensors 
generally used presently still adopt strain gauges [1]. 
Therefore, the design of the elastic body of multi-axis 
wrist force sensor is its key technology. During the past 
several ten years, many patents about the six-axis wrist 
force were mostly based on the various kinds of designs 
of elastic body [2], [7]. In order to improve the 
performance of sensor further, the designers urgently 
want to know the mechanical behavior of elastic 
element of sensor deeply and comprehensively [6]. 

With the development of robot in the direction of 
high speed and high accuracy, the problems on dynamic 
force measure is more and more glove [8]. Multi-axis 
wrist force sensor not only require high sensitivity in 
various axial directions, little cross-coupling, but also 
require adequate work bandwidth to meet the need of 
dynamic force measurement. Numerical analyses had 
been carried out on the mechanics behavior (mostly is 
static behavior) of elastic element of sensor in recent 
years [3-5], but many questions are worth discussing, in 
several aspects such as structure simplification, models 
building and results obtained etc.. In this paper, 
numerical analysis has been used to the static and 
dynamic characteristics of elastic body of a six-axis 
wrist force sensor which is used in space robots, and on 
this base, the optimization design of elastic body has 
been carried out, which offers references for designing 
this kind of sensor.  

2 Static analysis 
This kind of sensor is a cross-beam structure with 

various section or is a cellular design six-component 
force sensor [1]. It is made up of central platform, main 
beam and floating beam etc. as shown in Fig. 1. There, 
the inside of central platform is scooped into blind hole 
(placing circuit board inside to reduce weight and 
volume); strain gauges are adhered in the surface around 
the main beam; the thickness of floating beam is very 
thin, which is like a sheet and its two ends connect with 
the husk. 
2.1 Calculation model 

The direction of main beam in elastic body is 
chosen as the directions of x-axis and y-axis in the 
integral coordinate system, and the z-axis cross through 
the center of central platform. Three-dimension finite 
element analysis has been carried out on the whole 
structure. According to the structure parameters (as 
shown in letter), the shape and the calculation accuracy, 
the mesh was generated for the finite –element model 
using an eight-mode hyperelastic brick-type element. 
The structure is divided into 240 discrete 
three-dimension brick-type elements and has 466 nodes 
totally. As all external loadings act on the upper 
surfaces of central platform, and they are general forces 
in arbitrary direction, they can be simplified as force or 
moment which cross through the center of upper surface 
of central platform by mechanical principle as shown in 
Fig. 1.  

 

 
Fig. 1 The structure of elastic body and FE mesh 

 
When elastic body is working, the material is in the 

state of a bit deformation, thus, the external forces of 
any form applied on the elastic body in any direction 
can be represented by the above six kinds of different 
load cases respectively, or by the linear combination of 
the six ones .Allowing for the symmetry of structure and 
boundary restriction, according to the scale of the sensor, 
four kinds of load cases can be defined as follows: load 
case 1, the concentrate force along z-axis Fz50N, 
which acts on the center of upper surface of the central 
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