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Abstract 

In this paper, we mathematically analyze the feasibility 
of soft landing for a fast stair-climbing robot with a 
hopping mechanism. The robot, consisting of two 
bodies connected by springs and a wire, hops by 
releasing energy stored in the springs and travels 
quickly using wheels mounted on its lower body. The 
trajectories of the bodies during hopping depend on the 
design and control parameters. Although this robot 
realizes fast stair climbing and almost 0G soft landing 
without complex control, it is difficult to obtain the 
parameters required for soft landing. Here we 
investigate the relationship between the existence of a 
0G soft landing condition and the design and control 
parameters using the equation of motion, and we 
theorehically clarify the characteristics of soft landing. 
Keywords: stair-climbing robot, vibration, soft landing 
 

1 Introduction 
With the aim of achieving traversability over rough 

terrain, various mechanisms have been proposed and 
developed [1]-[5]. A wheel-type vehicle can move 
quickly and quite stably but cannot overcome obstacles 
higher than its wheel radius. A crawler-type vehicle can 
negotiate terrain with acertain degree of roughness but 
is slow and impairs the ground. A legged vehicle can 
climb over higher obstacles than other types of vehicles 
but requires complex control. Although hybrids of these 
mechanisms or a robot composed of several bodies, 
such as a snake robot, have also been proposed, most 
are not practical in terms of simple and easy operation 
such as surveillance in an office, because of the design 
and control costs. This is because they are expensive 
general-purpose vehicles designed to negotiate various 
rough terrains such as off-road surfaces and steps. We 
believe that a more specialized mechanism should be 
developed for limited operation environments, such as 
standardized stairs in an office building.  

From this viewpoint, we have proposed and 
developed a wheel-type robot with a hopping 
mechanism, that quickly climbs stairs by vibration and 
lands without impact, i.e., at 0G [6]-[8]. The robot, 
consisting of two bodies connected by springs and a 
wire, hops by releasing energy stored in the springs and 
travels quickly using wheels mounted on its lower body. 
The trajectories of the bodies during hopping depend on 

(a) design parameters, such as the reduced mass of the 
two bodies, the mass ratio, and the spring constant, and 
(b) control parameters, such as the initial contraction of 
the spring and the horizontal velocity. Although this 
mechanism realizes fast stair climbing and almost 0G 
soft landing without complex control, it is difficult to 
obtain the design and control parameters required for 
soft landing. Thus far, we have found the parameters 
using a stochastic searching scheme, i.e., a genetic 
algorithm (GA). In this paper, we investigate the 
relationship between the existence of a 0G soft-landing 
condition and the design and control parameters using 
the equation of motion, and we theoretically clarify the 
characteristics of soft landing.  
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Fig. 1 Overview of stair-climbing robot 

 
2 Mathematical model of the robot 

Figure 1 shows the developed stair-climbing robot. 
The robot consists of upper and lower bodies (Bodies 1 

and 2) connected by four shafts, four springs, and a wire. 
The upper body has a mechanism for reeling the wire, a 
CPU for control, and a battery, and the lower body has 
four wheels and two motors, enabling it to travel 
horizontally. The robot travels quickly using the wheels, 
hops to a considerable height by releasing the energy 
stored in the springs, and lands softly by canceling the 
downword velocity of the lower body using the 
ascending velocity of the vibration. 

Figure 2 shows a simplified mathematical 2D 
model for the stair climbing robot shown in Fig.1. From 
this, the equation of motion is described as the two 
degrees of freedom (2DOF) spring mass system  
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where (xi, zi) is a coordinate system for the ith body, mi is 
the mass, k is a spring constant, fx is the motor force for 
horizontal travel, μt Ff is the friction of the shaft, N is 
the reaction of the ground, g is a gravitation constant 
(=9.8m/s2), and Tw is the wire tension. Note that the 
posture of the robot is neglected in this study (that is 
x1=x2) and the natural length of the spring means z1-z2=0. 
The robot stores the spring energy by contracting the 
wire using the reeling mechanism and hops by releasing 
it. Thus, the robot hops, that is, the lower body takes off, 
if and only if it meets the following conditional 
expression  
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Fig.2 Two-dimensional mathematical model 
 

3 Definition of soft landing 
In previous study, we have defined a “soft landing” as 

a special landing in which the vertical velocity of the 
lower body is almost zero ( 02 z ), the acceleration is 
almost zero ( 02 z ), and the jerk is zero or negative 
( 02 z ) at the landing height ( Hz 2 ) [6]-[8]. 
Mathematically, this is a stationary and inflection point. 
Figure 3 shows two typical examples of soft landing, 
Cases A and B. The bold lines are the trajectories of the 

center of mass (COM) in Case A with design and 
control parameters of m1=2.00[kg], m2=1.00[kg], 
k=1400[N/m], and h=0.09[m]. On the other hand, the 
dashed lines are the trajectories of the COM in Case B 
with design and control parameters of m1=2.00[kg], 
m2=1.00[kg], k=2000[N/m], and h=0.11[m]. Here, h is 
the initial contraction of the spring. We can see that soft 
landing occurs at points A and B in Fig.3. In references 
[6]-[8], it is shown that the angular frequency during 
hopping is determined by the spring constant and the 
reduced mass of two bodies, and the vibration amplitude 
is determined by the upper to lower mass ratio and the 
initial contraction of the spring. Therefore, the soft 
landing point can be controlled via (a) design 
parameters, such as the reduced mass, the mass ratio, 
and the spring constant, and (b) control parameters, such 
as the initial contraction of the spring and the horizontal 
velocity. Once these parameters are determined, this 
mechanism realizes fast and impact-free stair climbing 
without complex control in an environment with stairs 
consisting of standardized riser and tread.  
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Fig.3 Two typical examples of trajectories of bodies 1  
and 2 during hopping 

 
4 Feasibility of soft landing 

To investigate the feasibility of soft landing, i.e., 
the existence of a soft-landing point, we mathematically 
redefine a “soft landing” as a special landing in which 
the vertical velocity of the lower body is zero ( 02 z ), 
the acceleration is zero ( 02 z ), and the jerk is zero or 
negative ( 02 z ) at the landing height ( Hz 2 ). Here, 
from the viewpoint of the shaft friction, we discuss the 
existence of a soft-landing point, that is, mathematically 
exact solution, using the equation of motion (eq.(1)) and 
the conditional expression for takeoff (eq.(2)). Note that 
we do not control the wire tension during hopping 
(N=0) for simplification of the motion control (Tw=0) in 
this paper.  
4.1 In the case without friction ( 0ft F ) 

Focusing on the vertical motion in eq.(1), the body 
trajectories during hopping ( 20 z , N=0) are described 
as  
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Abstract 

In this paper, we mathematically analyze the feasibility 
of soft landing for a fast stair-climbing robot with a 
hopping mechanism. The robot, consisting of two 
bodies connected by springs and a wire, hops by 
releasing energy stored in the springs and travels 
quickly using wheels mounted on its lower body. The 
trajectories of the bodies during hopping depend on the 
design and control parameters. Although this robot 
realizes fast stair climbing and almost 0G soft landing 
without complex control, it is difficult to obtain the 
parameters required for soft landing. Here we 
investigate the relationship between the existence of a 
0G soft landing condition and the design and control 
parameters using the equation of motion, and we 
theorehically clarify the characteristics of soft landing. 
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1 Introduction 
With the aim of achieving traversability over rough 

terrain, various mechanisms have been proposed and 
developed [1]-[5]. A wheel-type vehicle can move 
quickly and quite stably but cannot overcome obstacles 
higher than its wheel radius. A crawler-type vehicle can 
negotiate terrain with acertain degree of roughness but 
is slow and impairs the ground. A legged vehicle can 
climb over higher obstacles than other types of vehicles 
but requires complex control. Although hybrids of these 
mechanisms or a robot composed of several bodies, 
such as a snake robot, have also been proposed, most 
are not practical in terms of simple and easy operation 
such as surveillance in an office, because of the design 
and control costs. This is because they are expensive 
general-purpose vehicles designed to negotiate various 
rough terrains such as off-road surfaces and steps. We 
believe that a more specialized mechanism should be 
developed for limited operation environments, such as 
standardized stairs in an office building.  

From this viewpoint, we have proposed and 
developed a wheel-type robot with a hopping 
mechanism, that quickly climbs stairs by vibration and 
lands without impact, i.e., at 0G [6]-[8]. The robot, 
consisting of two bodies connected by springs and a 
wire, hops by releasing energy stored in the springs and 
travels quickly using wheels mounted on its lower body. 
The trajectories of the bodies during hopping depend on 

(a) design parameters, such as the reduced mass of the 
two bodies, the mass ratio, and the spring constant, and 
(b) control parameters, such as the initial contraction of 
the spring and the horizontal velocity. Although this 
mechanism realizes fast stair climbing and almost 0G 
soft landing without complex control, it is difficult to 
obtain the design and control parameters required for 
soft landing. Thus far, we have found the parameters 
using a stochastic searching scheme, i.e., a genetic 
algorithm (GA). In this paper, we investigate the 
relationship between the existence of a 0G soft-landing 
condition and the design and control parameters using 
the equation of motion, and we theoretically clarify the 
characteristics of soft landing.  
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2 Mathematical model of the robot 

Figure 1 shows the developed stair-climbing robot. 
The robot consists of upper and lower bodies (Bodies 1 

and 2) connected by four shafts, four springs, and a wire. 
The upper body has a mechanism for reeling the wire, a 
CPU for control, and a battery, and the lower body has 
four wheels and two motors, enabling it to travel 
horizontally. The robot travels quickly using the wheels, 
hops to a considerable height by releasing the energy 
stored in the springs, and lands softly by canceling the 
downword velocity of the lower body using the 
ascending velocity of the vibration. 

Figure 2 shows a simplified mathematical 2D 
model for the stair climbing robot shown in Fig.1. From 
this, the equation of motion is described as the two 
degrees of freedom (2DOF) spring mass system  
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where (xi, zi) is a coordinate system for the ith body, mi is 
the mass, k is a spring constant, fx is the motor force for 
horizontal travel, μt Ff is the friction of the shaft, N is 
the reaction of the ground, g is a gravitation constant 
(=9.8m/s2), and Tw is the wire tension. Note that the 
posture of the robot is neglected in this study (that is 
x1=x2) and the natural length of the spring means z1-z2=0. 
The robot stores the spring energy by contracting the 
wire using the reeling mechanism and hops by releasing 
it. Thus, the robot hops, that is, the lower body takes off, 
if and only if it meets the following conditional 
expression  
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3 Definition of soft landing 
In previous study, we have defined a “soft landing” as 

a special landing in which the vertical velocity of the 
lower body is almost zero ( 02 z ), the acceleration is 
almost zero ( 02 z ), and the jerk is zero or negative 
( 02 z ) at the landing height ( Hz 2 ) [6]-[8]. 
Mathematically, this is a stationary and inflection point. 
Figure 3 shows two typical examples of soft landing, 
Cases A and B. The bold lines are the trajectories of the 

center of mass (COM) in Case A with design and 
control parameters of m1=2.00[kg], m2=1.00[kg], 
k=1400[N/m], and h=0.09[m]. On the other hand, the 
dashed lines are the trajectories of the COM in Case B 
with design and control parameters of m1=2.00[kg], 
m2=1.00[kg], k=2000[N/m], and h=0.11[m]. Here, h is 
the initial contraction of the spring. We can see that soft 
landing occurs at points A and B in Fig.3. In references 
[6]-[8], it is shown that the angular frequency during 
hopping is determined by the spring constant and the 
reduced mass of two bodies, and the vibration amplitude 
is determined by the upper to lower mass ratio and the 
initial contraction of the spring. Therefore, the soft 
landing point can be controlled via (a) design 
parameters, such as the reduced mass, the mass ratio, 
and the spring constant, and (b) control parameters, such 
as the initial contraction of the spring and the horizontal 
velocity. Once these parameters are determined, this 
mechanism realizes fast and impact-free stair climbing 
without complex control in an environment with stairs 
consisting of standardized riser and tread.  
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Fig.3 Two typical examples of trajectories of bodies 1  
and 2 during hopping 

 
4 Feasibility of soft landing 

To investigate the feasibility of soft landing, i.e., 
the existence of a soft-landing point, we mathematically 
redefine a “soft landing” as a special landing in which 
the vertical velocity of the lower body is zero ( 02 z ), 
the acceleration is zero ( 02 z ), and the jerk is zero or 
negative ( 02 z ) at the landing height ( Hz 2 ). Here, 
from the viewpoint of the shaft friction, we discuss the 
existence of a soft-landing point, that is, mathematically 
exact solution, using the equation of motion (eq.(1)) and 
the conditional expression for takeoff (eq.(2)). Note that 
we do not control the wire tension during hopping 
(N=0) for simplification of the motion control (Tw=0) in 
this paper.  
4.1 In the case without friction ( 0ft F ) 

Focusing on the vertical motion in eq.(1), the body 
trajectories during hopping ( 20 z , N=0) are described 
as  
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where  , T, and C are constants determined by the 
initial conditions,   is the angular frequency, and M is 
the reduced mass. Here, the first and second terms on 
the right side represent the vibration of the 2DOF 
system and the parabolic motion of the COM of the 
robot, respectively. Then, T expresses the axis of 
symmetry of the parabolic motion. Assuming that the 
takeoff time is zero (t=0), the position and velocity of 
the lower body are zero at this time ( 02 z , 02 z ). 
Since the spring force is continuous and the takeoff 
condition is expressed by eq.(2), the above constants are 
simply solved as  
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On the other hand, letting the instantaneous time of soft 
landing be t=tland, from the acceleration condition of the 
soft landing ( 0)(2 landtz ), we obtain 
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Thus, using the first equation of eq.(4) and eq.(5), we 
also obtain 
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where n is a positive integer denoting the iteration 
number of the vibration. Moreover, from the jerk 
condition of the soft landing ( 0)(2 landtz ), we have 
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Here, although the substitution of eq.(5) and eq.(8) into 
the second equation of eq.(3) gives 0)(2 landtz , this is 
inconsistent with the position condition of the soft 

landing, Htz land )(2 . Hence, an exact solution (0<m1, 
0<m2, 0<k, 0<h) for the soft landing does not exist in 
Case Ia. 
Case Ib:  )12(2  ntland  
Substituting eq.(5) into the velocity condition of the soft 
landing ( 0)(2 landtz ), we have  
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However, 0landt , that is, either the angular 
frequency is zero or the soft landing time is zero, which 
is not the actual solution. Hence, an exact solution for 
the soft landing does not exist in Case Ib.  

From the above, we can conclude that a 
soft-landing point does not exist in the case without 
friction; hence, a perfect soft landing is not realized.  
4.2 In the case with friction ( 0ft F ) 

In this section, we take into account the shaft 
friction and discuss the existence of a soft-landing point 
by assuming the shaft friction to be Coulomb friction: 
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where   is a positive constant and the sign of the 
friction depends on the relative velocity between the 
lower and upper bodies. As indicated in the previous 
section, assuming that the wire is not controlled during 
hopping (Tw=0), the trajectories of the lower and upper 
bodies are described for two cases depending on the 
sign of the friction. The gray and white areas in Fig. 4 
show regions with positive and negative signs for the 
friction, respectively.  
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Here,  , T, and C correspond to the values in section 
4.1, but h is different from that in case I at the initial 
contraction of the spring. Next, we discuss the existence 
of a soft landing point for the following two cases. 
Case IIa: 2/22/   ntland  
In this case, the acceleration and the jerk at the moment 
of the soft landing ( 0landt ) are obtained from eq.(12) 
as 
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Here, since the amplitude of the vibration in eqs.(11) 
and (12) must be positive and the condition in case IIa is 
apparently )cos(0   landt , the sign of eq.(16) is 
positive ( )(0 2 landtz ). From this, the jerk condition of 
the soft landing, 0)(2 landtz ,
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is obtained. Thus, the position condition of the soft 
landing ( Htz land )(2 ) is  
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Although the exact solution (0<m1, 0<m2, 0<k, 0<h) 
satisfying these equations comprises the parameters 
realizing the soft landing, since the point at the landing 
time is the vertex of the parabolic motion ( Ttland  ), we 
cannot choose such a position as the actual soft landing 
point. This is because the robot has a physical body 
length and must glide above the tread by at least its 
body length to land both the front and rear wheels on 
the stairs simultaneously.  
 

 

Fig.4 An example of regions with positive and 
negative signs for the friction  

 
Case IIb: 2/322/   ntland  
In this case, the acceleration and the jerk at the moment 
of the soft landing ( 0landt ) are obtained from eq.(14) 
as 
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Here, since the amplitude of the vibration must be 
positive from eqs.(13) and (14) ( knh /)24(0  ) 
and the condition of case IIb is 0)cos(  landt , 
eq.(20) becomes 0)(2 landtz . Thus, this case satisfies 
the jerk condition of the soft landing. Next, from eq.(19) 
and the velocity condition of the soft landing 
( 0)(2 landtz ),  
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is obtained. Then, from the position condition of the soft 
landing ( Htz land )(2 ),  
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is also obtained. Hence, the exact solution (0<m1, 0<m2, 
0<k, 0<h) satisfying eqs. (19), (21), and (22) comprises 
the parameters realizing the soft landing.  

From this, we can conclude that an exact solution 
realizing the soft landing exists under spring contraction 
in the presence of friction.  

On the other hand, since the first term on the right 
side of eq.(21) is positive, we can see that the soft- 
landing point exists after the vertex of the parabolic 
motion. As indicated in the previous discussion, since 
the robot must glide above the tread by at least the body 
length, assuming that horizontal velocity 2x  is constant 
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where  , T, and C are constants determined by the 
initial conditions,   is the angular frequency, and M is 
the reduced mass. Here, the first and second terms on 
the right side represent the vibration of the 2DOF 
system and the parabolic motion of the COM of the 
robot, respectively. Then, T expresses the axis of 
symmetry of the parabolic motion. Assuming that the 
takeoff time is zero (t=0), the position and velocity of 
the lower body are zero at this time ( 02 z , 02 z ). 
Since the spring force is continuous and the takeoff 
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On the other hand, letting the instantaneous time of soft 
landing be t=tland, from the acceleration condition of the 
soft landing ( 0)(2 landtz ), we obtain 
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Thus, using the first equation of eq.(4) and eq.(5), we 
also obtain 
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where n is a positive integer denoting the iteration 
number of the vibration. Moreover, from the jerk 
condition of the soft landing ( 0)(2 landtz ), we have 
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Here, although the substitution of eq.(5) and eq.(8) into 
the second equation of eq.(3) gives 0)(2 landtz , this is 
inconsistent with the position condition of the soft 

landing, Htz land )(2 . Hence, an exact solution (0<m1, 
0<m2, 0<k, 0<h) for the soft landing does not exist in 
Case Ia. 
Case Ib:  )12(2  ntland  
Substituting eq.(5) into the velocity condition of the soft 
landing ( 0)(2 landtz ), we have  
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However, 0landt , that is, either the angular 
frequency is zero or the soft landing time is zero, which 
is not the actual solution. Hence, an exact solution for 
the soft landing does not exist in Case Ib.  

From the above, we can conclude that a 
soft-landing point does not exist in the case without 
friction; hence, a perfect soft landing is not realized.  
4.2 In the case with friction ( 0ft F ) 

In this section, we take into account the shaft 
friction and discuss the existence of a soft-landing point 
by assuming the shaft friction to be Coulomb friction: 
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where   is a positive constant and the sign of the 
friction depends on the relative velocity between the 
lower and upper bodies. As indicated in the previous 
section, assuming that the wire is not controlled during 
hopping (Tw=0), the trajectories of the lower and upper 
bodies are described for two cases depending on the 
sign of the friction. The gray and white areas in Fig. 4 
show regions with positive and negative signs for the 
friction, respectively.  
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In the case of 
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Here,  , T, and C correspond to the values in section 
4.1, but h is different from that in case I at the initial 
contraction of the spring. Next, we discuss the existence 
of a soft landing point for the following two cases. 
Case IIa: 2/22/   ntland  
In this case, the acceleration and the jerk at the moment 
of the soft landing ( 0landt ) are obtained from eq.(12) 
as 
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Here, since the amplitude of the vibration in eqs.(11) 
and (12) must be positive and the condition in case IIa is 
apparently )cos(0   landt , the sign of eq.(16) is 
positive ( )(0 2 landtz ). From this, the jerk condition of 
the soft landing, 0)(2 landtz ,

 
holds if and only if 

0)cos(  landt . Hence, 1)sin(  landt  is 
obtained because )sin(0   landt  from eq.(15). 
Substituting this equation into the velocity condition of 
the soft landing ( 0)(2 landtz ), 
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is obtained. Thus, the position condition of the soft 
landing ( Htz land )(2 ) is  
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Although the exact solution (0<m1, 0<m2, 0<k, 0<h) 
satisfying these equations comprises the parameters 
realizing the soft landing, since the point at the landing 
time is the vertex of the parabolic motion ( Ttland  ), we 
cannot choose such a position as the actual soft landing 
point. This is because the robot has a physical body 
length and must glide above the tread by at least its 
body length to land both the front and rear wheels on 
the stairs simultaneously.  
 

 

Fig.4 An example of regions with positive and 
negative signs for the friction  

 
Case IIb: 2/322/   ntland  
In this case, the acceleration and the jerk at the moment 
of the soft landing ( 0landt ) are obtained from eq.(14) 
as 
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Here, since the amplitude of the vibration must be 
positive from eqs.(13) and (14) ( knh /)24(0  ) 
and the condition of case IIb is 0)cos(  landt , 
eq.(20) becomes 0)(2 landtz . Thus, this case satisfies 
the jerk condition of the soft landing. Next, from eq.(19) 
and the velocity condition of the soft landing 
( 0)(2 landtz ),  
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is obtained. Then, from the position condition of the soft 
landing ( Htz land )(2 ),  
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is also obtained. Hence, the exact solution (0<m1, 0<m2, 
0<k, 0<h) satisfying eqs. (19), (21), and (22) comprises 
the parameters realizing the soft landing.  

From this, we can conclude that an exact solution 
realizing the soft landing exists under spring contraction 
in the presence of friction.  

On the other hand, since the first term on the right 
side of eq.(21) is positive, we can see that the soft- 
landing point exists after the vertex of the parabolic 
motion. As indicated in the previous discussion, since 
the robot must glide above the tread by at least the body 
length, assuming that horizontal velocity 2x  is constant 
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during hopping, the following condition is obtained 
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This equation determines the minimum horizontal 
velocity, and the condition that the horizontal traveling 
distance must be less than the tread limits the maximum 
horizontal velocity. From this, the control range of the 
horizontal traveling velocity ( 2x ) is determined.  

In this paper, we discussed the feasibility of soft 
landing by passive control after takeoff. If we take into 
account the control of the wire tension during hopping, 
a soft landing point exists in all cases (cases Ia, Ib, IIa, 
and IIb). However, since this implies force control by 
the positive wire tension ( wT0 ) and requires a force 
sensor with high sampling frequency, the 
implementation remains somewhat difficult from the 
viewpoint of design and control costs. Such 
implementation will be an interesting future work.  
 

5 Example of soft landing 
In this section, we show an example of soft landing 

by obtaining the exact solution. The design parameters 
are the masses of the lower and upper bodies, m1 and m2, 
respectively, and the spring constant, k, and the control 
parameters are the initial spring contraction variable, h, 
the vibration number, n, and the landing time, landt . 
Since these six parameters are solved using three 
equations, i.e., eqs. (19), (21), and (22), and two 
conditions, i.e., the condition of case IIb and the 
condition that the amplitude of the vibration is positive, 
an infinite number of exact solutions exist. Here, we 
introduce the exact solution (Table 1) approximately 
corresponding to  the experimental parameters in 
previous works [6]-[8]. Note that the riser H was set to 
0.2m for common stairs, the shaft friction was 5N from 
experimental results, and the tread length and horizontal 
velocity were neglected for simplicity of discussion.  

Figures 5-8 respectively show the vertical 
trajectories of the lower and upper bodies, the vertical 
velocities, the vertical accelerations, and the vertical 
jerks over time. Here, the gray and white areas 
respectively show the expansion and contraction phases 
of the springs. We can see that a soft-landing point 
appears on the dashed line in the white area, where the 
landing height is 0.2m, the vertical velocity is zero, the 
vertical acceleration is zero, and the vertical jerk is less 
than zero, and that the friction attenuates the amplitude 
of the vibration. In this paper, we focused on the shaft 
friction as one of the attenuation terms and discussed 
the existence of a soft-landing point. In future works, 
we intend to clarify the essential mechanism 
determining the existence of a soft-landing point, for 
example, the damper.  

 
Table 1 Design and control parameters 

m1[kg] m2[kg] k[N/m] h[m] n landt [s] 
1.535 1.376 1000 0.13 2 0.4158 

 
Fig.5 Trajectories of bodies 1 and 2 during hopping 

 
Fig.6 Velocities of bodies 1 and 2 during hopping 

 

 
Fig.7 Accelerations of bodies 1 and 2 during hopping 
 

 
Fig.8 Jerks of bodies 1 and 2 during hopping

6 Conclusions 
In this paper, to realize the 0G soft landing of a fast 

stair-climbing robot with a hopping mechanism, we 
analyzed the existence of a soft-landing point, i.e., the 
existence of an exact solution, using the equation of 
motion from the viewpoint of shaft friction as one of the 
attenuation terms. Additionally, we discussed the 
feasibility of soft landing.  

A future work is to investigate the robustness of 
soft landing against sensor and actuator errors.  

 
 References 

[1] Hirose, S., Sensu, T. and Aoki, S., “The TAQT 
Carrier: A Practical Terrain-Adaptive Quadru-Track 
Carrier Robot,” Proceedings of IEEE/RSJ 
International Conference on Intelligent Robots and 
Systems, (1992), pp.2068-2073. 

[2] Saranli, U., Buehler, M. and Koditschek, D. E., 
“RHex: A Simple and Highly Mobile Hexapod 
Robot,” International Journal of Robotics Research, 
Vol.20, No.7, (2001), pp.616-628. 

[3] Sugahara, Y., Carbone, G., Hashimoto, K., 
Ceccarelli, M., Lim, H. and Takanishi, A., 
“Experimental Stiffness Measurement of WL-16RII 
Biped Walking Vehicle during Walking Operation,” 
Journal of Robotics and Mechatronics, Vol.19,No.3, 
(2007), pp.272-280. 

[4] Yim, M. H., Homans, S. B. and Roufas, K. D., 
“Climbing with Snake-like Robots,” IFAC 
Workshop on Mobile Robot Technology, (2001), 

pp.21-22. 
[5] Nakajima, S., Nakano, E. and Takahashi, T., 

“Motion Control Technique for Practical Use of a 
Leg-Wheel Robot on Unknown Outdoor Rough 
Terrains,” Proceedings of IEEE/RSJ International 
conference on Intelligent Robots and Systems, Vol.1, 
(2004), pp.1353-1358. 

[6] Sakaguchi, K., Sudo, T., Bushida, N., Chiba, Y., Asai, 
Y. and Kikuchi, K., “Wheel-Based Stair-climbing 
Robot with Hopping Mechanism – Fast 
Stair-climbing and Soft-landing by Vibration of 
2-DOF system –,“ The Japan Society of Mechanical 
Engineers, Journal of Robotics and Mechatronics, 
Vol.19, No.3, (2007), pp.258-263. 

[7] Asai, Y., Chiba, Y., Sakaguchi, K., Sudo, T., Bushida, 
N., Otsuka, H., Saito, Y. and Kikuchi, K., 
“Wheel-based Stair-climbing Robot with Hopping 
Mechanism - Demonstration of Continuous Stair 
Climbing Using Vibration –,“ The Japan Society of 
Mechanical Engineers, Journal of Robotics and 
Mechatronics, Vol.20, No.2, (2008), pp.221-227. 

[8] Kikuchi, K., Sakaguchi, K., Sudo, T., Bushida, N., 
Chiba, Y. and Asai, Y., “A Study on Wheel-based 
Stair-climbing robot with Hopping Mechanism”, 
Mechanical Systems and Signal Processing, Elsevier, 
Vol.22, No.6, (2008), pp.1316-1326. 

 
 
Received on October 31, 2013 
Accepted on January, 28, 2014

 

– 126 – – 127 – 



during hopping, the following condition is obtained 
 

22

2
2 )

)24(
(1])24([2










nkh
gm

k
nh

gm
MxL  .

 
            (23) 

 
This equation determines the minimum horizontal 
velocity, and the condition that the horizontal traveling 
distance must be less than the tread limits the maximum 
horizontal velocity. From this, the control range of the 
horizontal traveling velocity ( 2x ) is determined.  

In this paper, we discussed the feasibility of soft 
landing by passive control after takeoff. If we take into 
account the control of the wire tension during hopping, 
a soft landing point exists in all cases (cases Ia, Ib, IIa, 
and IIb). However, since this implies force control by 
the positive wire tension ( wT0 ) and requires a force 
sensor with high sampling frequency, the 
implementation remains somewhat difficult from the 
viewpoint of design and control costs. Such 
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jerks over time. Here, the gray and white areas 
respectively show the expansion and contraction phases 
of the springs. We can see that a soft-landing point 
appears on the dashed line in the white area, where the 
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vertical acceleration is zero, and the vertical jerk is less 
than zero, and that the friction attenuates the amplitude 
of the vibration. In this paper, we focused on the shaft 
friction as one of the attenuation terms and discussed 
the existence of a soft-landing point. In future works, 
we intend to clarify the essential mechanism 
determining the existence of a soft-landing point, for 
example, the damper.  
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stair-climbing robot with a hopping mechanism, we 
analyzed the existence of a soft-landing point, i.e., the 
existence of an exact solution, using the equation of 
motion from the viewpoint of shaft friction as one of the 
attenuation terms. Additionally, we discussed the 
feasibility of soft landing.  
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 References 

[1] Hirose, S., Sensu, T. and Aoki, S., “The TAQT 
Carrier: A Practical Terrain-Adaptive Quadru-Track 
Carrier Robot,” Proceedings of IEEE/RSJ 
International Conference on Intelligent Robots and 
Systems, (1992), pp.2068-2073. 

[2] Saranli, U., Buehler, M. and Koditschek, D. E., 
“RHex: A Simple and Highly Mobile Hexapod 
Robot,” International Journal of Robotics Research, 
Vol.20, No.7, (2001), pp.616-628. 

[3] Sugahara, Y., Carbone, G., Hashimoto, K., 
Ceccarelli, M., Lim, H. and Takanishi, A., 
“Experimental Stiffness Measurement of WL-16RII 
Biped Walking Vehicle during Walking Operation,” 
Journal of Robotics and Mechatronics, Vol.19,No.3, 
(2007), pp.272-280. 

[4] Yim, M. H., Homans, S. B. and Roufas, K. D., 
“Climbing with Snake-like Robots,” IFAC 
Workshop on Mobile Robot Technology, (2001), 

pp.21-22. 
[5] Nakajima, S., Nakano, E. and Takahashi, T., 

“Motion Control Technique for Practical Use of a 
Leg-Wheel Robot on Unknown Outdoor Rough 
Terrains,” Proceedings of IEEE/RSJ International 
conference on Intelligent Robots and Systems, Vol.1, 
(2004), pp.1353-1358. 

[6] Sakaguchi, K., Sudo, T., Bushida, N., Chiba, Y., Asai, 
Y. and Kikuchi, K., “Wheel-Based Stair-climbing 
Robot with Hopping Mechanism – Fast 
Stair-climbing and Soft-landing by Vibration of 
2-DOF system –,“ The Japan Society of Mechanical 
Engineers, Journal of Robotics and Mechatronics, 
Vol.19, No.3, (2007), pp.258-263. 

[7] Asai, Y., Chiba, Y., Sakaguchi, K., Sudo, T., Bushida, 
N., Otsuka, H., Saito, Y. and Kikuchi, K., 
“Wheel-based Stair-climbing Robot with Hopping 
Mechanism - Demonstration of Continuous Stair 
Climbing Using Vibration –,“ The Japan Society of 
Mechanical Engineers, Journal of Robotics and 
Mechatronics, Vol.20, No.2, (2008), pp.221-227. 

[8] Kikuchi, K., Sakaguchi, K., Sudo, T., Bushida, N., 
Chiba, Y. and Asai, Y., “A Study on Wheel-based 
Stair-climbing robot with Hopping Mechanism”, 
Mechanical Systems and Signal Processing, Elsevier, 
Vol.22, No.6, (2008), pp.1316-1326. 

 
 
Received on October 31, 2013 
Accepted on January, 28, 2014

 

– 126 – – 127 – 


